SIEMENS

TC65 Terminal Siemens Cellular Engine

Version: 00.550 DocID: TC65 Terminal_HD_V00.550

Document Name:	TC65 Terminal Hardware Interface Description
Version:	00.550
Date:	June 20, 2005
Docld:	TC65 Terminal_HD_V00.550
Status:	Strictly confidential / Draft

General note

Product is deemed accepted by Recipient and is provided without interface to Recipient's products. The Product constitutes pre-release version and code and may be changed substantially before commercial release. The Product is provided on an "as is" basis only and may contain deficiencies or inadequacies. The Product is provided without warranty of any kind, express or implied. To the maximum extent permitted by applicable law, Siemens further disclaims all warranties, including without limitation any implied warranties of merchantability, fitness for a particular purpose and noninfringement of third-party rights. The entire risk arising out of the use or performance of the Product and documentation remains with Recipient. This Product is not intended for use in life support appliances, devices or systems where a malfunction of the product can reasonably be expected to result in personal injury. Applications incorporating the described product must be designed to be in accordance with the technical specifications provided in these guidelines. Failure to comply with any of the required procedures can result in malfunctions or serious discrepancies in results. Furthermore, all safety instructions regarding the use of mobile technical systems, including GSM products, which also apply to cellular phones must be followed. Siemens AG customers using or selling this product for use in any applications do so at their own risk and agree to fully indemnify Siemens for any damages resulting from illegal use or resale. To the maximum extent permitted by applicable law, in no event shall Siemens or its suppliers be liable for any consequential, incidental, direct, indirect, punitive or other damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information or data, or other pecuniary loss) arising out the use of or inability to use the Product, even if Siemens has been advised of the possibility of such damages. Subject to change without notice at any time.

Copyright

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

Copyright © Siemens AG 2005

Contents

1	Introduction5		
	1.1	Related Documents	.5
	1.2	Terms and Abbreviations	.6
	1.3	Type Approval	
	1.4	Safety Precautions1	0
2	Kevf	features of TC65 Terminal1	2
	2.1	Technical Requirements for Using TC65 Terminal1	
3	Inter	face Description1	5
	3.1	Overview1	5
	3.2	Block Diagram1	6
	3.3	Operating Modes1	
	3.4	Terminal circuit	
	3.5	Power Supply1	9
		3.5.1 Switch on TC65 Terminal	
		3.5.2 Reset TC65 Terminal	20
		3.5.3 Switch off TC65 Terminal	
		3.5.4 Disconnecting power supply	20
		3.5.5 RTC	
	3.6	RS-232 Interface	22
	3.7	Audio Interface	24
	3.8	Antenna Interface	26
	3.9	SIM Interface	26
	3.10	IO Interfaces	28
		3.10.1 GPIOs	
		3.10.2 I ² C Interface	31
		3.10.3 SPI Interface	31
		3.10.4 Analog Inputs	32
		3.10.5 Power Supply	32
		3.10.6 VDD Supply	
		3.10.7 ON/OFF Switch	32
	3.11	Status LED	32
4	Mech	hanical Characteristics	33
	4.1	IO Interface Connector	
		4.1.1 Mechanical dimensions of the Mate_N_LOK Header	
5	Electrical and Environmental Characteristics		
6	E	Type Approval4	16
6			
	6.1 Cable Requirements		
	6.2	Restrictions	
	6.3	CE Conformity	
	6.4	Electromagnetic Compatibility (EMC)4	-7
7	List	of Parts and Recommended Accessories4	8

Tables

Table 1: Overview of operating modes	. 17
Table 2: Pin assignment of the Western plug for power supply	. 19
Table 3: 9-pole D-Sub (female) RS-232	
Table 5: Pin assignment – SIM card holder	.27
Table 6: Assignment of the GPIO connector	
Table 7: I ² C interface – signal description	
Table 8: SPI interface – signal description	
Table 9: Mechanical characteristics	
Table 10: Electrical and mechanical characteristics of the Micro Mate-N-LOK connector	
Table 11: Ordering information Tyco Micro Mate-N-LOK	
Table 12: Absolute maximum ratings	
Table 13: Operating conditions	
Table 14: Characteristics power supply	
Table 15: Characteristics On/Off control	
Table 16: Characteristics RS-232 interface	
Table 17: Characteristics audio interface	
Table 18: AT adjustable parameters	
Table 19: Characteristics SIM interface for use with 3V cards	
Table 20: Characteristics SIM interface for use with 1.8V cards	
Table 21: Characteristics GPIOs	
Table 22: Characteristics I2C interface	
Table 23: Characteristics SPI interface	
Table 24: Characteristics ADC interface	-
Table 25: RF Connector	
Table 26: List of parts and accessories	.48
Figures	

Figures

Figure 1: TC65 Terminal front view	.15
Figure 2: TC65 Terminal rear view	.15
Figure 3: Block diagram	. 16
Figure 4: TC65 Terminal circuit block diagram	
Figure 5: Female 6-pole Western plug for power supply, ignition, emergency off	. 19
Figure 6: Pin assignment RS-232 (D-Sub 9-pole female)	.22
Figure 7: Audio Western plug (4-pole female)	.24
Figure 8: Audio block diagram	.25
Figure 9: Pin location of the Molex SIM card holder and position	.26
Figure 10: GPIO connector front view	.28
Figure 11: Location of GPIO pins	. 30
Figure 12: Mechanical dimensions	.34
Figure 13: Receptacle connector Tyco Micro Mate-N-LOK series	.35
Figure 14: Header Tyco Micro Mate-N-LOK series on TC65 Terminal	. 35
Figure 15: Receptacle contact for Tyco Micro Mate-N-LOK series	.35
Figure 16: Mechanical dimension of Tyco Mate_N_LOK Header	.36
Figure 17: Reference equipment for approval	.46

1 Introduction

This document describes the hardware of the Siemens TC65 Terminal. The information are intended for users, developers or manufacturers who design and build cellular applications beyond the standard setup. The scope of this document includes interface specifications, electrical issues and mechanical characteristics of TC65 Terminal. It specifies standards pertaining to wireless applications and outlines requirements that must be adhered to for successful product design. The TC65 Terminal is a compact GSM modem for the transfer of data, voice, SMS and faxes in GSM networks. Industrial standard interfaces and an integrated SIM card reader allow using TC65 Terminal easily as a dual band GSM terminal. The functionality of the Terminal corresponds to the features of the TC65 module.

1.1 Related Documents

- [1] TC65 AT Command Set
- [2] TC65 Terminal Release Notes 00.550
- [3] Application Note 16: Upgrading TC65 Firmware
- [4] Multiplexer User's Guide (not yet available)
- [5] TC65 JAVA User's Guide
- [6] Java doc \wtk\doc\html\index.html

Prior to using the GSM engine, be sure to carefully read and understand the latest product information provided in the Release Notes.

To visit the Siemens Website you can use the following link: <u>http://www.siemens.com/wm</u>

1.2 Terms and Abbreviations

Abbreviation	Description		
ADC	Analog-to-Digital Converter		
ANSI	American National Standards Institute		
ARP	Antenna Reference Point		
В	Thermistor Constant		
BER	Bit Error Rate		
BTS	Base Transceiver Station		
CE	Conformité Européene (European Conformity)		
CHAP	Challenge Handshake Authentication Protocol		
CS	Coding Scheme		
CSD	Circuit Switched Data		
СТЅ	Clear to Send		
DAC	Digital-to-Analog Converter		
dBm0	Digital level, 3.14dBm0 corresponds to full scale, see ITU G.711, A-law		
DCE	Data Communication Equipment (typically modems, e.g. Siemens GSM engine)		
DCS 1800	Digital Cellular System, also referred to as PCN		
DSP	Digital Signal Processor		
DSR	Data Set Ready		
DTE	Data Terminal Equipment (typically computer, terminal, printer or, for example, GSM application)		
DTR	Data Terminal Ready		
DTX	Discontinuous Transmission		
EFR	Enhanced Full Rate		
EGSM	Enhanced GSM		
EMC	Electromagnetic Compatibility		
ESD	Electrostatic Discharge		
ETS	European Telecommunication Standard		
FCC	Federal Communications Commission (U.S.)		
FR	Full Rate		
GMSK	Gaussian Minimum Shift Keying		
GPIO	General Purpose Input/Output		
GPRS	General Packet Radio Service		
GSM	Global Standard for Mobile Communications		
HiZ	High Impedance		
HR	Half Rate		
I/O	Input/Output		

Abbreviation	Description		
IMEI	International Mobile Equipment Identity		
ISO	International Standards Organization		
ITU	International Telecommunications Union		
kbps	kbits per second		
LED	Light Emitting Diode		
Mbps	Mbits per second		
MMI	Man Machine Interface		
МО	Mobile Originated		
MS	Mobile Station (GSM module), also referred to as TE		
MT	Mobile Terminated		
NTC	Negative Temperature Coefficient		
PAP	Password Authentication Protocol		
PBCCH	Packet Switched Broadcast Control Channel		
РСВ	Printed Circuit Board		
PCM	Pulse Code Modulation		
PCN	Personal Communications Network, also referred to as DCS 1800		
PCS	Personal Communication System, also referred to as GSM 1900		
PDU	Protocol Data Unit		
PPP	Point-to-point protocol		
PSU	Power Supply Unit		
R&TTE	Radio and Telecommunication Terminal Equipment		
RAM	Random Access Memory		
RF	Radio Frequency		
RTC	Real Time Clock		
RTS	Request to Send		
Rx	Receive Direction		
SELV	Safety Extra Low Voltage		
SIM	Subscriber Identification Module		
SMS	Short Message Service		
SPI	Serial Peripheral Interface		
SRAM	Static Random Access Memory		
TE	Terminal Equipment, also referred to as DTE		
Тх	Transmit Direction		
UART	Universal asynchronous receiver-transmitter		
URC	Unsolicited Result Code		
USSD	Unstructured Supplementary Service Data		

1.3 Type Approval

TC65 Terminal is designed to comply with the directives and standards listed below. Please note that the product is still in a pre-release state and, therefore, type approval and testing procedures have not yet been completed.

European directives

- 99/05/EC "Directive of the European Parliament and of the council of 9 March 1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity", in short referred to as R&TTE Directive 1999/5/EC
- 89/336/EC Directive on electromagnetic compatibility
- 73/23/EC Directive on electrical equipment designed for use within certain voltage limits (Low Voltage Directive)
- 2002/95/EC Directive of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RUHS)
- 2002/96/EC Directive of the European Parliament and of the Council on waste electrical and electronic equipment (WEEE)
- 2003/108/EC Directive of the European Parliament and of the Council of 8 December 2003 amending directive 2002/96/ec on waste electrical and electronic equipment (WEEE)

Standards of North American Type Approval

- CFR Title 47 "Code of Federal Regulations, Part 22 and Part 24 (Telecommunications, PCS)"; US Equipment Authorization FCC
- UL 60 950 "Product Safety Certification" (Safety requirements)

NAPRD.03 "Overview of PCS Type certification review board Mobile Equipment Type Certification and IMEI control" PCS Type Certification Review board (PTCRB), Version 3.1.2

RSS133 (Issue2) Canadian Standard

Standards of European Type Approval

- 3GPP TS 51.010-1 "Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification" V5.10.0
- ETSI EN 301 511 "V9.0.2 (2003-03) Candidate Harmonized European Standard (Telecommunications series) Global System for Mobile communications (GSM); Harmonized standard for mobile stations in the GSM 900 and DCS 1800 bands covering essential requirements under article 3.2 of the R&TTE directive (1999/5/EC) (GSM 13.11 version 7.0.1 Release 1998)"
- GCF-CC "Global Certification Forum Certification Criteria" V3.18.0
- ETSI EN 301 489-1 "V1.4.1 Candidate Harmonized European Standard (Telecommunications series) Electro Magnetic Compatibility and Radio spectrum Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common Technical Requirements"
- ETSI EN 301 489-7 "V1.2.1 (2002-08) Candidate Harmonized European Standard (Telecommunications series) Electro Magnetic Compatibility and Radio spectrum Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 7: Specific conditions for mobile and portable radio and ancillary equipment of digital cellular radio telecommunications systems (GSM and DCS)"
- EN 60 950-1 Safety of information technology equipment (2001)

Requirements of quality

IEC 60068	Environmental testing
-----------	-----------------------

DIN EN 60529 IP codes

1.4 Safety Precautions

The following safety precautions must be observed during all phases of the operation, usage, service or repair of any cellular terminal or mobile incorporating TC65 Terminal. Manufacturers of the cellular terminal are advised to convey the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. Failure to comply with these precautions violates safety standards of design, manufacture and intended use of the product. Siemens AG assumes no liability for customer's failure to comply with these precautions.

When in a hospital or other health care facility, observe the restrictions on the use of mobiles. Switch the cellular terminal or mobile off, if instructed to do so by the guidelines posted in sensitive areas. Medical equipment may be sensitive to RF energy.

The operation of cardiac pacemakers, other implanted medical equipment and hearing aids can be affected by interference from cellular terminals or mobiles placed close to the device. If in doubt about potential danger, contact the physician or the manufacturer of the device to verify that the equipment is properly shielded. Pacemaker patients are advised to keep their hand-held mobile away from the pacemaker, while it is on.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it cannot be switched on inadvertently. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communications systems. Failure to observe these instructions may lead to the suspension or denial of cellular services to the offender, legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. Remember that interference can occur if it is used close to TV sets, radios, computers or inadequately shielded equipment. Follow any special regulations and always switch off the cellular terminal or mobile wherever forbidden, or when you suspect that it may cause interference or danger.

Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for speakerphone operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

Speakerphones must be installed by qualified personnel. Faulty installation or operation can constitute a safety hazard.

IMPORTANT!

Cellular terminals or mobiles operate using radio signals and cellular networks. Because of this, connection cannot be guaranteed at all times under all conditions. Therefore, you should never rely solely upon any wireless device for essential communications, for example emergency calls.

Remember, in order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency calls if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may need to deactivate those features before you can make an emergency call.

Some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

SOS

If a power supply unit is used to supply the device, it must meet the demands placed on SELV circuits in accordance with EN60950. The maximum permissible connection length between the device and the supply source should not exceed 3m.

According to the guidelines for human exposure to radio frequency energy, an antenna connected to the SMA jack of the device should be placed at least 20cm away from human bodies.

2 Key features of TC65 Terminal

Feature	Implementation		
General			
Incorporates TC65 module	The TC65 module handles all processing for audio, signal and data within the TC65 Terminal. Internal software runs the application interface and the whole GSM protocol stack.		
Frequency bands	Quad band: GSM 850/900/1800/1900MHz		
GSM class	Small MS		
Output power (according to Release 99, V5)	Class 4 (+33dBm ±2dB) for EGSM850 Class 4 (+33dBm ±2dB) for EGSM900 Class 1 (+30dBm ±2dB) for GSM1800 Class 1 (+30dBm ±2dB) for GSM1900		
	The values stated above are maximum limits. According to Release 99, Version 5, the maximum output power in a multislot configuration may be lower. The nominal reduction of maximum output power varies with the number of uplink timeslots used and amounts to 3.0dB for 2Tx, 4.8dB for 3Tx and 6.0dB for 4Tx.		
Power supply	Single supply voltage 8V to 30V		
Operating temperature	-30°C to +65°C ambient temperature		
Physical	Dimensions: 130mm x 90mm x 38mm Weight: approx. 190g Hardware platform is free of lead and halogen.		
GSM / GPRS features			
Data transfer	 GPRS Multislot Class 12 Full PBCCH support Mobile Station Class B Coding Scheme 1 – 4 CSD 		
	 V.110, RLP, non-transparent 2.4, 4.8, 9.6, 14.4kbps USSD 		
	PPP-stack for GPRS data transfer		
 SMS Point-to-point MT and MO Cell broadcast Text and PDU mode Storage: SIM card plus 25 SMS locations in mobile eq Transmission of SMS alternatively over CSD or Preferred mode can be user defined. 			
Fax	Group 3; Class 1		

Feature	Implementation	
Audio	 Speech codecs: Half rate HR (ETS 06.20) Full rate FR (ETS 06.10) Enhanced full rate EFR (ETS 06.50/06.60/06.80) Adaptive Multi Rate AMR Speakerphone operation Echo cancellation, noise suppression DTMF 7 ringing tones 	
Software		
AT commands	AT-Hayes GSM 07.05 and 07.07, Siemens AT commands for RIL compatibility (NDIS/RIL)	
Microsoft [™] compatibility	RIL / NDIS for Pocket PC and Smartphone	
Java platform JDK Version: 1.4.2_07	Java Virtual Machine with interfaces to AT Parser, Serial Interface, FlashFileSystem and TCP/IP Stack. Major benefits: seamless integration into Java applications, ease of programming, no need for application microcontroller, extremely cost-efficient hardware and software design – ideal platform for industrial GSM applications.	
SIM Application Toolkit	SAT Release 99	
TCP/IP stack	Access by AT commands	
IP adresses	IP version 6	
Remote SIM Access	TC65 Terminal supports Remote SIM Access. RSA enables TC65 Terminal to use a remote SIM card via its serial interface, in addition to the SIM card locally attached to the dedicated lines of the application interface. In a vehicle mounted scenario, for example, this allows the driver to access a mobile phone brought into the car from a car-embedded phone. The connection between both phones can be a Bluetooth wireless link or a serial link, e.g. via the car cradle. The necessary protocols and procedures are implemented according to the "SIM Access Profile Interoperability Specification of the Bluetooth Special Interest Group".	
Firmware update	Upgradeable via serial interface.	
Interfaces		
 1 serial interface ASCO 8-wire modem interface with status and control unbalanced, asynchronous Fixed bit rates: 300 bps to 460,800 bps Autobauding: 1,200 bps to 460,800 bps Supports RTS0/CTS0 hardware handshake and s XON/XOFF flow control. Multiplex ability according to GSM 07.10 Multiplexer Press 		

I ² C	I ² C bus for transmission rates up to 400kbps. Programmable with AT^SSPI command. Alternatively, all pins of the I ² C interface are configurable as SPI.	
SPI	Serial Peripheral Interface for transmission rates up to 6.5 Mbps. Programmable with AT^SSPI command. If the SPI is active the I ² C interface is not available.	
Audio	Analog (Microphone, Earpiece)	
SIM interface	Supported SIM cards: 3V, 1.8V	
Antenna	Connected via antenna SMA connector	
Power on/off, Reset		
Power on/off	 Switch on via On/Off push button, ONOFF line (GPIO), DTF line (RS232) or POWER line (Power connector) Switch off via AT command (AT^SMSO), On/Off push buttor or EMERGOFF line (Power connector) Automatic switch off in case of critical temperature and voltage conditions. 	
Reset	Orderly shutdown and reset by AT command	
Special features		
Real time clock	Timer functions via AT commands	
GPIO	10 I/O pins of the application interface programmable as GPIO. Programming is done via AT commands. Alternatively, GPIO pin 10 is configurable as pulse counter.	
Pulse counter	Pulse counter for frequency range of 0Hz to 1000Hz. If the pulse counter is active the GPIO pin 10 is not available.	
ADC inputs	Two balanced analog inputs for measuring external voltages.	
Phonebook	SIM and phone	

2.1 Technical Requirements for Using TC65 Terminal

- TC65 Terminal
- Computer running Windows 2000, Windows XP
- 1.8V or 3.0V SIM card
- 8 to 30 Volts power supply unit
- RS-232 cable (for high data rates ≤ 1.5 m)
- UART capable of data rates up to 460800 bps. Usually, this requires an appropriate serial adapter to be installed on the computer.
- RF antenna
- Audio handset
- Customized mating connector for IO interfaces type Micro Mate-N-LOK.
- Terminal program to control the COM port, for example Windows Hyperterminal.
- Access to a GSM/GPRS network providing support of the authentication protocol PAP or CHAP. The GPRS settings of your service provider should be at hand. Please contact your service provider or follow the link below to obtain all required information. <u>http://www.gsmworld.com/technology/gprs/operators.shtml</u>

3 Interface Description

3.1 Overview

TC65 Terminal provides the following connectors for power supply, interfacing and antenna:

- 1. GPIO Micro Mate-N-LOK connector for GPIOs, I²C, SPI, ADC
- 2. 9-pole (female) SUB-D plug for RS-232 serial interface
- 3. SMA connector (female) for antenna
- 4. On/Off push button
- 5. 4-pole Western plug (female) for audio accessory, such as a handset
- 6. SIM card holder
- 7. 6-pole Western plug (female) for power supply, ignition, power down signal

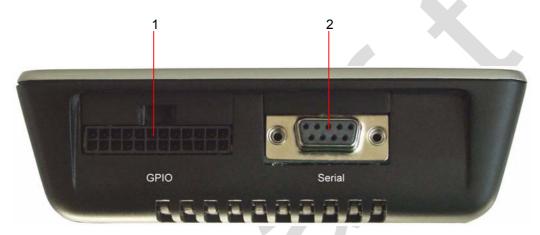


Figure 1: TC65 Terminal front view

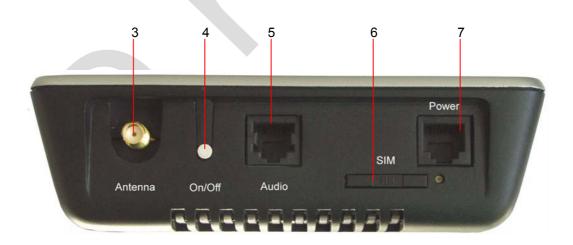
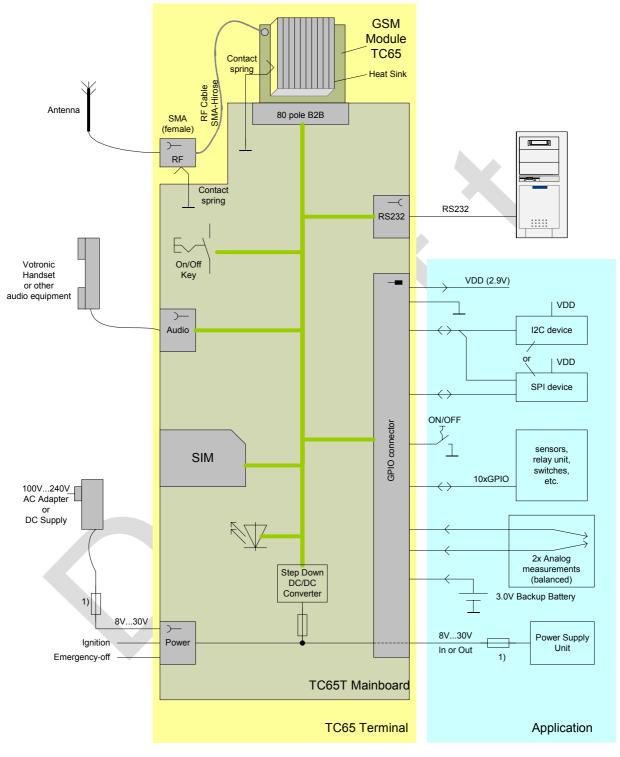



Figure 2: TC65 Terminal rear view

3.2 Block Diagram

Figure 3 shows a block diagram of a sample configuration that incorporates a TC65 Terminal and typical accessories.

1) Fast acting fuse 1,25A , (0.9...1.3) A^2s is recommended for 24V vehicle supply only.

Figure 3: Block diagram

3.3 Operating Modes

The table below briefly summarizes the various operating modes referred to in the following chapters.

Normal operation	GSM / GPRS SLEEP	Various power save modes set with AT+CFUN command. Software is active to minimum extent. If the Terminal was registered to the GSM network in IDLE mode, it is registered and paging with the BTS in SLEEP mode, too. Power saving can be chosen at different levels: The NON-CYCLIC SLEEP mode (AT+CFUN=0) disables the AT interface. The CYCLIC SLEEP modes AT+CFUN=7 and 9 alternatively activate and deactivate the AT interfaces to allow permanent access to all AT commands.
	GSM IDLE	Software is active. Once registered to the GSM network, paging with BTS is carried out. The Terminal is ready to send and receive.
	GSM TALK	Connection between two subscribers is in progress. Power consumption depends on network coverage individual settings, such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.
	GPRS IDLE	Terminal is ready for GPRS data transfer, but no data is currently sent or received. Power consumption depends on network settings and GPRS configuration (e.g. multislot settings).
	GPRS DATA	GPRS data transfer in progress. Power consumption depends on network settings (e.g. power control level), uplink / downlink data rates, GPRS configuration (e.g. used multislot settings) and reduction of maximum output power.
POWER DOWN	Normal shutdown after sending the AT^SMSO command. The Power Supply disconnects the supply voltage from the baseband part of the circuit. Only a voltage regulator is active for powering the RTC. Software is not active. Interfaces are not accessible. Operating voltage (connected to BATT+) remains applied.	
Airplane mode	 Airplane mode shuts down the radio part of the module, causes the Terminal to log off from the GSM/GPRS network and disables all AT commands whose execution requires a radio connection. Airplane mode can be controlled by using the AT commands AT^SCFG and AT+CALA: With AT^SCFG=MEopMode/Airplane/OnStart the Terminal can be configured to enter the Airplane mode each time when switched on or reset. The parameter AT^SCFG=MEopMode/Airplane can be used to switch back and forth between Normal mode and Airplane mode any time during operation. Setting an alarm time with AT+CALA followed by AT^SMSO wakes the module up into Airplane mode at the scheduled time. 	

3.4 Terminal circuit

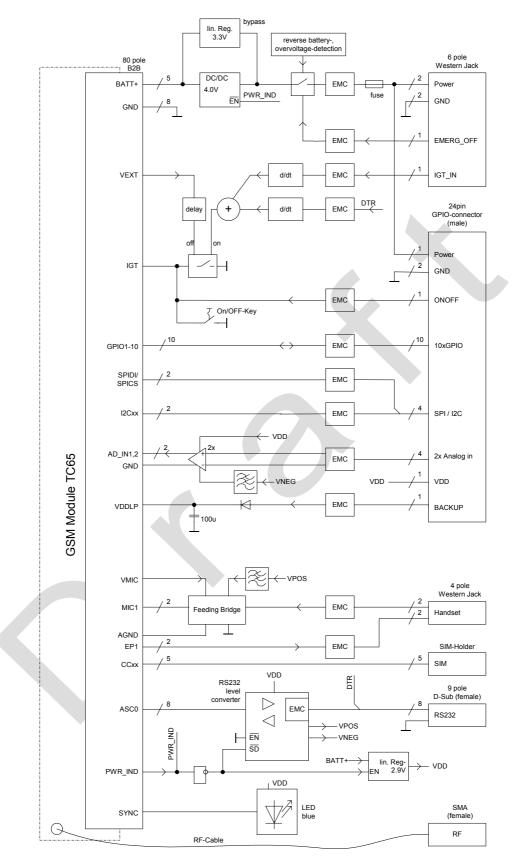


Figure 4: TC65 Terminal circuit block diagram

3.5 **Power Supply**

The power supply of the TC65 Terminal has to be a single voltage source of POWER=8V...30V capable of providing a peak current of about 2A at 12V during an active transmission. The uplink burst causes strong ripple (drop) on the power lines. The drop voltage should not exceed 3.2V.

The TC65 Terminal is protected from supply voltage reversal and overvoltage. An internal fuse that is not removable ensures for electrical safety according to EN60950.

A fast acting fuse 1.25A, (0.9 ... 1.3) A²s is necessary to operate the TC65 Terminal at 24V vehicle power supply systems.

The power supply must be compliant with the EN60950 guidelines.

Table 2: Pin assignment of the Western plug for power supply

Pin	Signal name	Use	Parameters
1	POWER	Power supply	8V – 30V DC
2	POWER	Power supply	
3	EMERGOFF	Signal for POWER DOWN mode	Active: 4.5V – 30V Inactive: <3V
4	IGT_IN	Ignition input	Active: 4.5V – 30V Inactive: <3V
5	GND	Ground	0V
6	GND	Ground	-

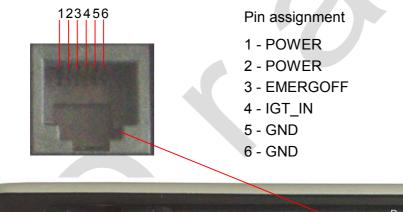


Figure 5: Female 6-pole Western plug for power supply, ignition, emergency off

3.5.1 Switch on TC65 Terminal

There are several ways to turn on the TC65 Terminal:

- Switch on via ON/OFF push button or the ONOFF signal line (GPIO connector) The major approach is to switch on the TC65 Terminal by pressing the ON/OFF key. The ONOFF pin of the GPIO connector connected in parallel to the ON/OFF key makes it possible to control the TC65 Terminal from a remote unit.
- Switch on via IGT_IN line (power supply connector) or DTR line (serial connector) The rising edge of the IGT_IN line or the DTR line voltage generates an ignition signal (impulse) so that it is possible to switch on the TC65 Terminal from the host or by remote control.

Switch on condition: If the TC65 Terminal is off the ON/OFF push button or the corresponding signal line must be asserted for at least 400 ms and then released.

3.5.2 Reset TC65 Terminal

An easy way to reset the TC65 Terminal is entering the command AT+CFUN=x,1. For details on AT+CFUN please see [1].

3.5.3 Switch off TC65 Terminal

TC65 Terminal can be switched off as follows:

Software controlled shutdown by AT^SMSO command

The AT^SMSO command lets TC65 Terminal log off from the network and allows the software to enter into a secure state and safe data before disconnecting the power supply. The mode is referred to as Power-down mode. In this mode, only the RTC stays active.

- Software controlled shutdown via ON/OFF push button, ONOFF line (GPIO connector) By pressing the ON/OFF push button or by activating the ONOFF signal for >1s the TC65 Terminal will be switched off. The shutdown behavior is identical to the behavior when using the AT^SMSO command.
- Shutdown via EMEROFF line (power supply connector) By activating the EMERGOFF signal for >1s the TC65 Terminal will be switched off. All information stored in the volatile memory get lost.

• Automatic shutdown: Takes effect if board temperature is out of range or if undervoltage or overvoltage conditions occur.

3.5.4 Disconnecting power supply

Before disconnecting the power supply from the POWER pin, make sure that the TC65 Terminal is in a safe condition. The best way is to wait 1s after the "^SHUTDOWN" result code has been indicated.

3.5.5 RTC

The internal Real Time Clock (RTC) of the TC65 Terminal must be supplied from a separate voltage regulator which is also active when TC65 Terminal is in POWER DOWN status. An alarm function is provided that allows to wake up TC65 Terminal to Airplane mode without logging on to the GSM network. See [1] for details.

You can use the BACKUP pin on the GPIO connector to backup the RTC from an external battery (rechargeable or non-chargeable). If no external battery is connected, a 100μ F capacitor supplies the RTC about 6s during power interruptions.

3.6 RS-232 Interface

The serial interface of the TC65 Terminal is intended for the communication between the GSM module and the host application. This RS-232 interface is a data and control interface for transmitting data, AT commands and providing multiplexed channels. EMC immunity complies with the vehicular environment requirements according to EN 301 489-7.

Figure 6: Pin assignment RS-232 (D-Sub 9-pole female)

Pin no.	Signal name	I/O	Function	
1	DCD	0	Data Carrier Detected	
2	RXD	0	Receive Data	
3	TXD	1	Transmit Data	
4	DTR	I	Data Terminal Ready Attention: Low-to-high transition of the DTR line activates the ignition signal of the GSM module	
5	GND	-	Ground	
6	DSR	0	Data Set Ready	
7	RTS		Request To Send	
8	CTS	0	Clear To Send	
9	RING	0	Ring Indication	

Table 3: 9-pole D-Sub (female) RS-232

TC65 Terminal is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:

- Port TxD @ application sends data to TXD of TC65 Terminal
- Port RxD @ application receives data from RXD of TC65 Terminal

The RS-232 interface is implemented as a serial asynchronous transmitter and receiver conforming to ITU-T V.24 Interchange Circuits DCE. It is configured for 8 data bits, no parity and 1 stop bit, and can be operated at fixed bit rates from 300bps to 460,800bps. Autobauding supports bit rates from 1,2bps to 460,800bps. Hardware handshake using the /RTS and /CTS signals and XON/XOFF software flow control are supported.

In addition, the modem control signals DTR, DSR, DCD and RING are available. The modem control signal RING (Ring Indication) can be used to indicate, to the cellular device application, that a call or Unsolicited Result Code (URC) is received.

3.7 Audio Interface

The audio interface provides one analog input for a microphone and one analog output for an earpiece.

- The microphone input and the earpiece output are balanced.
- For electret microphones a supply source is implemented.
- The microphone supply characteristics are optimized for the recommended Votronic handset. For ordering Information see Chapter 7.
- This handset has been used as the reference handset for type approval. An extra approval must be obtained for integrating other handsets or amplifiers.

The amplification of sending direction, receiving direction and sidetone depend on the current audio mode.

EMC immunity complies with the vehicular environment requirements according to EN 301 489-7.

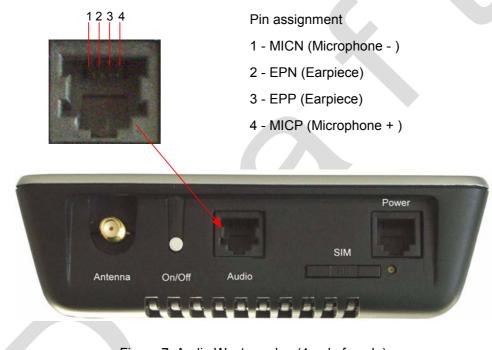


Figure 7: Audio Western plug (4-pole female)

TC65 Terminal Hardware Interface Description Strictly confidential / Draft SIEMENS

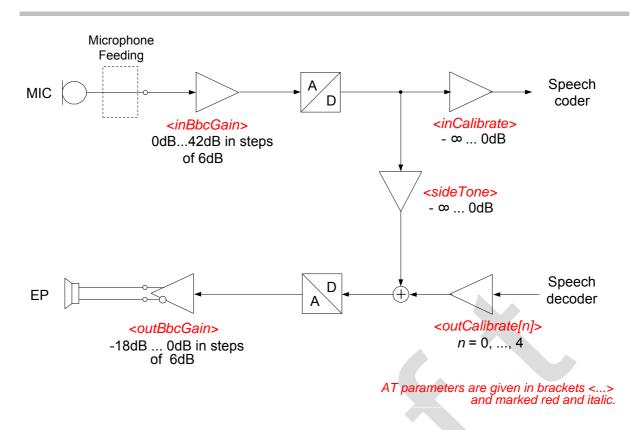


Figure 8: Audio block diagram

The audio interface can be configured by AT commands. Please note that the 2nd audio interface mentioned in [1] is not connected. Audio modes 2, 3 and 6 can be selected by setting AT^SAIC=2,1,1, for further details refer to [1].

The electrical characteristics of the voiceband part vary with the audio mode. To suit several types of audio equipment, three audio modes given by default can be selected by the AT command AT^SNFS, see [1].

Speech processing:

The speech samples from the ADC are handled by the DSP of the baseband controller to calculate e.g. amplifications, sidetone, echo cancellation or noise suppression depending on the configuration of the active audio mode. These processed samples are passed to the speech encoder. Received samples from the speech decoder are passed to the DAC after post processing (frequency response correction, adding sidetone etc.).

Full rate, half rate, enhanced full rate, adaptive multi rate (AMR), speech and channel encoding including voice activity detection (VAD) and discontinuous transmission (DTX) and digital GMSK modulation are also performed on the GSM baseband processor.

3.8 Antenna Interface

In order to send or receive data, connect an external RF antenna to the SMA connector which is internally connected to the RF signal of the GSM module.

Please consider that the recommended antenna equipment has been chosen to achieve optimum RF performance when operating the TC65 Terminal. Siemens does not accept warranty claims for damage caused by inappropriate equipment connected to the antenna connector.

3.9 SIM Interface

The SIM interface is intended for 3V and 1.8V SIM cards. The card holder is a five wire interface according to GSM 11.11. A sixth pin has been added to detect whether or not the SIM card drawer is inserted.

Removing and inserting the SIM card during operation requires the software to be reinitialized. Therefore, after reinserting the SIM card it is necessary to restart TC65 Terminal.

Note: No guarantee can be given, nor any liability accepted, if loss of data is encountered after removing the SIM card during operation.

Also, no guarantee can be given for properly initializing any SIM card that the user inserts after having removed a SIM card during operation. In this case, the application must restart TC65 Terminal.

Figure 9: Pin location of the Molex SIM card holder and position

Pin number on holder	Signal name	I/O	Function	
1	VSIM	O Supply voltage for SIM card, generated by the module (see section Error! Reference source not found for details)		
2	CCRST	0	Chip card reset, prompted by the module	
3	CCCLK	0	Chip card clock	
4,8	GND	-	Ground	
5	CCVPP	-	Not connected	
6	CCIO	I/O	Serial data line, bi-directional	
7	CCIN	I	Serial data line, bi-directionalChip card drawer detection0 = Chip card drawer inserted1 = Chip card drawer not insertedInput on the baseband processor for detecting the chipcard drawer in the holder; if the SIM is removed duringoperation the interface is shut down immediately to preventdestruction of the SIM.	

Table 5: Pin assignm	ent – SIM card holder
----------------------	-----------------------

3.10 IO Interfaces

Via the GPIO connector the following interfaces and functions are provided.

- Programmable GPIOs
- I²C bus
- SPI interface
- Two analog inputs (balanced)
- Power supply
- Backup supply
- VDD supply
- On/Off switch of the terminal

The total cable length of the digital lines for I²C and SPI interfaces should not exceed 150mm.

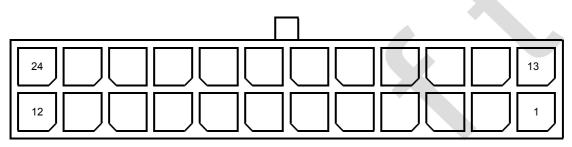


Figure 10: GPIO connector front view

Pin	Signal name	I/O	Description	
1	I2CCLK_SPICLK	0	I2C Clock	
2	I2CDAT_SPIDO	I/O	I2C Data	
3	IO3	I/O	Programmable GPIO	
4	IO4	I/O	Programmable GPIO	
5	IO5	I/O	Programmable GPIO	
6	IO6	I/O	Programmable GPIO	
7	IO1	I/O	Programmable GPIO	
8	IO2	I/O	Programmable GPIO	
9	AD2_IN_P	1	Balanced analog 2 positive input	
10	AD2_IN_N	1	Balanced analog 2 negative input	
11	BACKUP	I/O	Backup battery	
12	GND		Ground for power supply	
13	SPICS	0	SPI Select	
14	SPIDI	1	SPI Data In	
15	IO9	I/O	Programmable GPIO	
16	IO10	I/O	Programmable GPIO/ Pulse counter	
17	107	I/O	Programmable GPIO	
18	IO8	I/O	Programmable GPIO	
19	VDD	0	Signal supply voltage	
20	ONOFF	1	Ignition	
21	AD1_IN_P	I	Balanced analog 1 positive input	
22	AD1_IN_N	1	Balanced analog 1 negative input	
23	GND		Signal ground	
24	POWER		Power supply	

Table 6: Assignment of the GPIO connector

3.10.1 GPIOs

The TC65 Terminal provides 10 GPIOs at the GPIO connector. Each GPIO line is ESD protected and a serial resistor of 100 Ohms is added.

This avoids short circuits and is especially important in the first stages of development, where the Java application is not yet fully implemented.

The signal direction (input/output) of the GPIO lines is selectable with AT commands. Figure 11 shows the position of the GPIO pins at the GPIO connector.

Alternatively GPIO pin10 can be used to configure, start or stop a pulse counter for input frequency range of 0Hz to 1000Hz.

The GPIOs and the pulse counter can be configured via the following AT commands: AT^SPIO, AT^SCPIN, AT^SCPOL, AT^SCPORT, AT^SDPORT, AT^SGIO, AT^SSIO, AT^SCCNT, AT^SSCNT. For details please refer to [1].

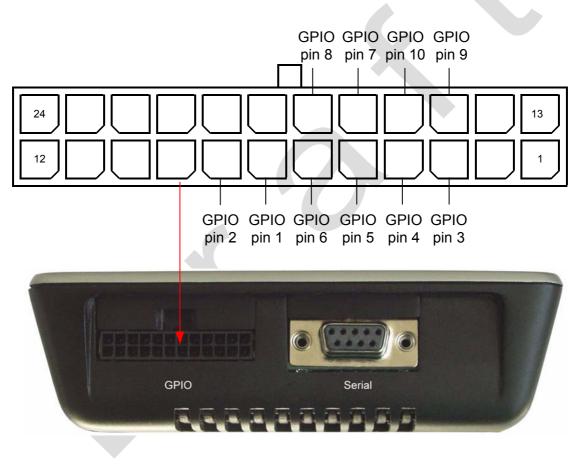


Figure 11: Location of GPIO pins

3.10.2 I²C Interface

The I²C interface is located on the GPIO connector of the TC65 Terminal.

I²C is a serial, 8-bit oriented data transfer bus for bit rates up to 400kbps in Fast mode. It consists of two lines, the serial data line I2CDAT and the serial clock line I2CCLK.

The TC65 Terminal acts as a single master device, e.g. the clock I2CCLK is driven by the Terminal. I2CDAT is a bi-directional line.

Each device connected to the bus is software addressable by a unique address, and simple master/slave relationships exist at all times. The Terminal operates as master-transmitter or as master-receiver. The customer application transmits or receives data only on request of the Terminal. To configure and activate the I²C interface use the AT^SSPI command described in [1].

The I²C interface is only available if the pins 1 and 2 of the GPIO connector are not used as SPI interface.

Signal name	Pin	Description
I2CDAT_SPIDO	1	Data in/out – bidirectional serial data line
I2CCLK_SPICLK	2	Serial clock line

Table 7: I²C interface – signal description

3.10.3 SPI Interface

The SPI interface is located on the GPIO connector of the TC65 Terminal.

The SPI (serial peripheral interface) is a synchronous serial interface for control and data transfer between the TC65 Terminal and the connected application. Only one application can be connected to the Terminal's SPI. The interface supports transmission rates up to 6.5Mbit/s. It consists of four lines, the two data lines SPIDI/SPIDO, the clock line SPICLK and the chip select line SPICS.

The TC65 Terminal acts as a single master device, e.g. the clock SPICLK is driven by Terminal. Whenever the SPICS pin is in a low state, the SPI bus is activated and data can be transferred from the Terminal and vice versa. The SPI interface uses two independent lines for data input (SPIDI) and data output (SPIDO).

The SPI interface is only available if the pins 1 and 2 of the GPIO connector are not used as I²C interface.

Signal name	Pin	Description
SPICS	13	Chip select – selects and activates the external device via a low signal.
SPIDI	14	Data in – serial data input line (from the external device to the TC65 Terminal)
I2CDAT_SPIDO	1	Data out – serial data output line (from the TC65 Terminal to the external device)
I2CCLK_SPICLK	2	Serial clock line

Table 8: SPI interface – signal description

3.10.4 Analog Inputs

The two analog inputs are used for measuring external DC voltages in range of 0V to 5.0V. To configure the analog inputs use the commands AT^SRADC and AT^SAADC described in [1].

TBD

3.10.5 Power Supply

The two power supply pins of the GPIO connector are parallel to two pins of the Western Jack for power supply. This allows supplying the TC65 Terminal by using the Power connector or via the GPIO connector.

3.10.6 VDD Supply

The VDD pin of the GPIO connector may be used for supplying external circuit devices or applications and indicates the following states of the TC65 Terminal.

- VDD output voltage = 2.9V @ max. 50mA indicates Normal Operation mode or Airplane mode
- VDD output voltage = 0V indicates Power Down mode

3.10.7 ON/OFF Switch

If the ONOFF pin of the GPIO connector is active low it may be used to switch on or switch off the TC65 Terminal.

For more information to switch on /switch off the Terminal please refer to chapter 3.5.1 and 3.5.3.

3.11 Status LED

A blue LED displays the operating status of the TC65 Terminal.

The connected LED can be operated in two different display modes (AT^SSYNC=1 or AT^SSYNC=2).

Display mode 1 (AT^SSYNC=1) is the factory default of the TC65 Terminal. For more information to the different operating states and to change the mode please refer to [1].

4 Mechanical Characteristics

Table 9: Mechanical characteristics

Weight	190g	
Dimensions (max) L x W x H	130mm x 90mm x 38mm	
Temperature range	-30°C to +65°C ambient temperature	
Protection class	IP40 (Avoid exposing TC65 Terminal to liquid or moisture, for example do not use it in a shower or bath.)	
Mechanical vibrations Amplitude	7.5mm at 5-200Hz sinus	
Max. pulse acceleration	30g pulse with 18 ms duration time	
Air humidity	580% (non condensing)	
Class of flammability	UL94 HB	
Casing material	PC/ABS Cycoloy 1200 HF	

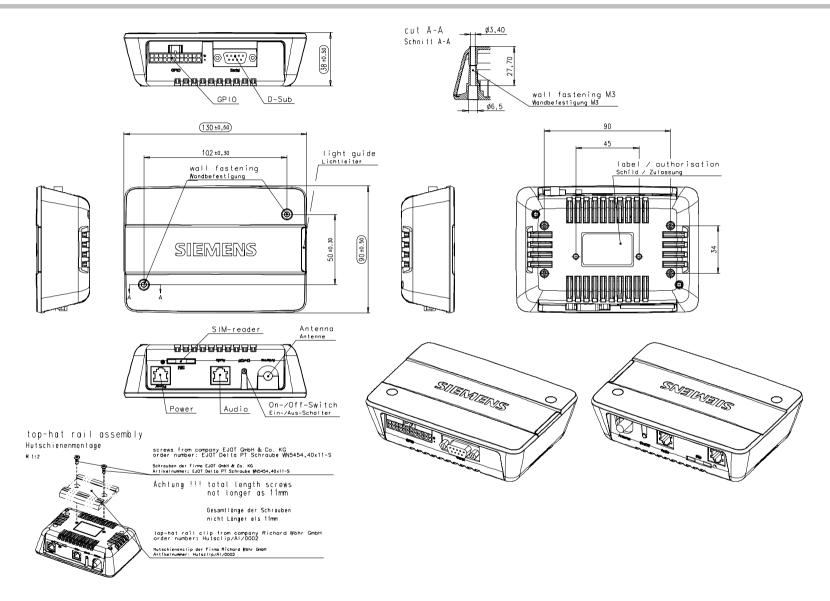
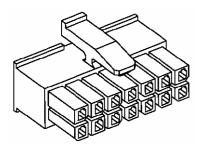



Figure 12: Mechanical dimensions

4.1 IO Interface Connector

This chapter provides specifications for the 24-pin IO interface connector which serves the I2C, SPI and GPIO interfaces of the Terminal. The receptacle assembled on the TC65 Terminal is type Micro Mate-N-LOK 3mm from Tyco Electronics. Mating headers can be chosen from the Tyco Micro Mate-N-LOK Series. For latest product information please contact your Micro Electronics dealer or visit the Tyco home page, for example <u>http://www.tycoelectronics.com</u>.

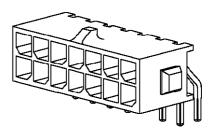


Figure 13: Receptacle connector Tyco Micro Mate-N-LOK series

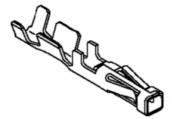


Figure 14: Header Tyco Micro Mate-N-LOK series on TC65 Terminal

Figure 15: Receptacle contact for Tyco Micro Mate-N-LOK series

Table 10: Electrical and mechanical characteristics of the Micro Mate-N-LOK connector

Parameter	Specification	
Number of contacts	24	
Voltage rating	250V	
Current rating	5A max.	
Resistance	0.02 Ohm max. per contact	
Dielectric withstanding voltage	1500VAC	
Operating temperature	-40°C+105°C	
Contact centerline	3.0mm	
Mating force	6.67N max. per contact	
Contacts packaging method	Contacts available in strip form or loose piece (24 pieces/housing for full assembly)	
Receptacle housing material	Flame-retardant black thermoplastic	
Contact material	Phosphor bronze	

Table 11: Ordering information 7	Tyco Micro Mate-N-LOK
----------------------------------	-----------------------

Item	Number of positions	Ordering number
Receptacle Housing Micro Mate-N-LOK 3mm	24	2-794617-4
Crimp Snap-IN Receptacle Contacts for max.		79460-1
\oslash 1.53mm cable		

4.1.1 Mechanical dimensions of the Mate_N_LOK Header

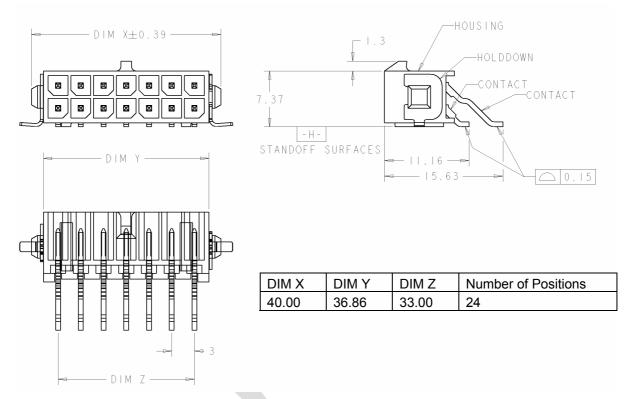


Figure 16: Mechanical dimension of Tyco Mate_N_LOK Header

5 Electrical and Environmental Characteristics

Table 12: Absolute max	ximum ratings
------------------------	---------------

Parameter	Port / Description	Min.	Max.	Unit
Supply voltage	POWER	+8	+30	V
Overvoltage	POWER for 1min		+33	V
Revers voltage	POWER		-30	V
Input voltage for emergency off	EMERGOFF	-5	+30	V
RS-232 input voltage range	TXD0, DTR0, RTS0	-25	+25	V
	RXD0, CTS0, DSR0, DCD0, RING0	-13	+13	V
Digital GPIO	IO1 – IO10	-0.3	+3.05	V
Digital SPI	I2CCLK_SPICLK, I2CDAT_SPIDO, SPICS, SPIDI	-0.3	+3.05	V
Digital I2C	I2CCLK_SPICLK, I2CDAT_SPIDO	-0.3	+3.05	V
Analog Input	AD1_IN_P, AD1_IN_N, AD2_IN_P, AD2_IN_N	-0.3	+6	V
Microphone input line voltage	MICP1, MICN1	-0.3	+7	V
Earpiece voltage (idle, no power)	EPP1, EPN1	-0.3	+3.0	V
Earpiece voltage (idle, with power)	EPP1, EPN1		+3.6	V
Immunity against air discharge of static electricity	all connectors (lines)	-8	+8	kV
Immunity against contact discharge of static electricity	all connectors (lines)	-4	+4	kV
Protection Class	IP40 (avoid exposing to liquid or moisture, for example do not use it in a shower or bath)		IP 40	
Mechanical vibrations amplitude	@ 5-200Hz		7.5	mm
Mechanical pulse- acceleration	@ 18ms duration		30	g

Table 13: Operating conditions

Parameter	Min	Тур	Max	Unit
Ambient temperature	-30	25	65 ¹⁾	°C
Supply voltage V _{POWER} measured at (6-pole) western jack plug (1, 2 to 5,6)	7.6 lowest voltage (minimum peak) incl. all ripple and drops	12	30	V

1)

Continuous operation at 65°C environmental temperature is not possible in every operating mode due to intrinsic heating of the TC65 Terminal.

The level of intrinsic heating depends on several factors, inter alia from the level of the supply voltage, the operating mode (GPRS/GSM) and the network coverage. The maximum possible environmental temperature in GPRS Class 12 operating mode (MS-configuration 1down/4up, PCL5/Gamma3, 12V supply voltage, 900MHz band, with power reduction) is about 45°C. When exceeding this temperature the TC65 Terminal will send a request for a Class-Mark-Change (CMC, from GPRS Class 12 to GPRS Class 8) to the base station. At a successful change of the GPRS class the intrinsic heating of the TC65 Terminal will be reduced. If the board temperature decreases for an amount of 5K the GPRS Class will be stepped up again.

Continuous operation in Talk mode is possible up to an environmental temperature of about 67°C (12V, 900MHz, PCL5). With decreasing transmit power of the TC65 Terminal, the maximum possible environmental temperature, at which a GPRS continuous operation at PCL5/Gamma3 is possible, increases.

For a short time it is also possible to establish a GPRS Class 12 connection at PCL5/Gamma3 and at an ambient temperature of 65°C. Starting a data download in GPRS Class 12 mode with power reduction at 65°C environmental temperature, the CMC will be enabled after 7 minutes.

This information concerns to 12V supply voltage. At 8V resp. 30V the intrinsic heating is higher, whereby the maximum possible environmental temperature will be lower.

Special values of maximum ratings

The following table shows the highest possible ambient temperatures, at which the temperature of the NTC will reach a final value of 81°C (GPRS Class 10,12 Temperature of Class Marc Change) or the final shut down temperature 90°C (GPRS Class 8 and Voice Call).

Terminal horizontal, normal position	Highest possible ambient temperature
GPRS Class 8 PCL5/Gamma3	67°C
GPRS Class 10 PCL5/Gamma3	48°C
GPRS Class 12 PCL5/Gamma3 with Power Reduction	45°C
GPRS Class 12 PCL5/Gamma3 without Power Reduction	34°C

The following table shows the longest possible duration of connection until 81°C (Temperature of Class Marc Change) will be reached at the NTC, when the ambient temperature is 65°C.

Terminal horizontal, normal position	Longest possible duration of connection
GPRS Class 10 PCL5/Gamma3	11 minutes
GPRS Class 12 PCL5/Gamma3 with Power Reduction	7 minutes
GPRS Class 12 PCL5/Gamma3 without Power Reduction	

The following table shows the longest possible duration of connection when the Class Mark Change from GPRS Class 12 or 10 to GPRS Class 8 did not work proberly and 90°C (Temperature of Hardware shut off) will be reached at the NTC (ambient temperature is 65° C).

Terminal horizontal, normal position	Longest possible duration of connection
GPRS Class 8 PCL5/Gamma3	continous operation
GPRS Class 10 PCL5/Gamma3	22 minutes
GPRS Class 12 PCL5/Gamma3 with Power Reduction	14 minutes
GPRS Class 12 PCL5/Gamma3 without Power Reduction	

Table 14: Characteristics	power supply
---------------------------	--------------

Parameter	Description	Conditions		Min	Тур	Max	Unit
V _{POWER}	Operating Voltage			8 ¹⁾	12	30	V
		for one minute	for one minute			33	V
	Allowed voltage ripple (peak-peak), drop during transmit burst peak current	Talk mode, power control le P _{out} max ¹⁾			400	mV	
IPOWER Average supply currer (average time 3 min.) @25°C @ worst case: GSM 900 max power level	Average supply current	Power Down mode	@8V		0.45		μA
	(average time 3 min.)		@12V		0.50		1
			@30V		0.80		
	@25°C	SLEEP mode	@8V		40		mA
			@12V		29		1
			@30V		18		1
	-	IDLE mode	@8V		50		mA
			@12V		36		
			@30V		21		
		TALK mode	@8V		277		mA
			@12V		184		
			@30V		82		
		Data GPRS 1Tx / 4Rx	@8V		260		mA
			@12V		173		
			@30V		77		
		Data GPRS 2Tx / 3Rx (Power reduction = 3dB)	@8V		378		mA
			@12V		248		
			@30V		108		
		Data GPRS 4Tx / 1Rx (Power reduction = 6dB)	@8V		500		mA
			@12V		330		
			@30V		140		
POWER_P ²⁾	Peak supply current during transmission slot	Power control level for Pout max	@8V		TBD		А
	(577µs * No. of Tx every	Fout max	@12V		TBD		
	4.6ms)		@30V		TBD		
t _{PLUS-Fail}	Allowed power fail time without terminal reset or power down	After this time the Terminal will be reset or switched off				1	ms
	Allowed power fail time	Backup Battery not connec		6		s	
	without RTC reset	After this time the RTC will					
t _{R_PLUS}	Allowed rise time of V_{PLUS}	0% to 100%				20	ms

¹⁾ Lowest voltage (minimum peak) incl. all ripple and drops >7.6V including voltage drop, ripple and spikes, measured at western jack (6-pole) pin (1 to 6)

²⁾ Typical values measured with antenna impedance = 500hm (return loss >20dB) Maximum values measured with mismatched antenna

Function	Signal name	ю	Signal from and level	Comment
Emergency OFF	EMERGOFF	I	V _L max = 0.8V V _L min = -0.3V V _H min = 4V V _H max = 30V Signal Active High ≥ 1s	Emergency off switched the power supply of the Terminal off. Data stored in the volatile memory will be lost, if used the emergency off. If unused keep pin open.
Ignition	IGT_IN	1	V _L max = 0.8V V _L min = -0.3V V _H min = 4V at 20μA V _H max = 30V at 150μA SignalActive High ≥ 300ms	This signal switches the mobile ON. It's possible to connect IGT_IN directly with POWER If unused keep pin open.
	ONOFF	1	$\begin{array}{l} R_{I} \approx 30 k \Omega, \ C_{I} \approx 10 n F \\ V_{IL} max = 0.5 V \ at \ Imax = -150 \mu A \\ V_{OH} max = V_{BATT+} \\ \\ \\ Signal \overbrace{}}^{C} _ \overbrace{}}^{C} \ Active \ Low: \\ \\ \geq 400 \mathrm{ms} - \mathrm{if \ Terminal \ OFF} \to ON \\ \\ \\ \geq 1 \mathrm{s} - \mathrm{if \ Terminal \ ON} \to OFF \end{array}$	This signal switches the mobile ON. This line must be driven low by an open drain or open collector driver. If unused keep pin open.
Table 16: Cr	naracteristics RS	5-232	interface	

Table 16: Characteristics RS-232 interface

Function	Signal name	ю	Signal from and level	Comment
RS232	TXD RTS DTR	 	$R_imin = 3kOhm$ $V_{IL}max = 0.6V$ $V_{IH}min = 2.4V$ $V_imax = \pm 25V$ Baud rate 1.2kbps 460kbps	If lines are unused keep pin open.
	RXD CTS DSR DCD RING	0 0 0 0	V_0 min = ±5V at 3kOhm load Leakage Current max = ±25µA at Module power down.	
				<u>.</u>

Function	Signal name	ю	Parameter	Min.	Тур.	Max.	Unit
Microphone	MICP	I	DC (no load) at MICP	5.3	5.4	5.5	V
			DC at MICP in POWER DOWN		0		V
			DC (no load) at MICN		0		V
			DC Resistance differential MICN, MICP (balanced)	2.3	2.4	2.5	kOhm
			Impedance Z _i (balanced)	1.9	2.0	2.1	kOhm
	MICN	I	Input level U _{imax}			1.58	V _{PP}
			Gain range 6 dB steps	0		42	dB
			Frequency Range	200		3900	Hz
			fine scaling by DSP (inCalibrate)	_∞		0	dB
Earpiece	EPP	0	Impedance (balanced)	8			Ohm
			AC output level U ₀ Gain = 0dB @ 3.14 dBm0 no load		5.97		V _{PP}
			Gain range	-18		0	dB
			Gain accuracy			0.8	dB
	EPN C	0	Frequency area	200		3900	Hz
			DC Offset (balanced)			100	mV
			Attenuation distortion for 2003900Hz			1	dB
			Out-of-band discrimination		70		dB
LE _{Audio}			Length of Audio (Handset) cable			3	m

Table 17: Characteristics audio interface

Audio Modes:

The electrical characteristics of the voiceband part depend on the current audio mode selected by the AT command AT^SNFS.

Table 18: AT adjustable parameters

Parameter	Influence to	Range	Gain range	Calculation
inBbcGain	MICP/MICN analogue amplifier gain of baseband controller before ADC	07	042dB	6dB steps
inCalibrate	digital attenuation of input signal after ADC	032767	-∞0dB	20 * log (inCalibrate/ 32768)
outBbcGain	EPP/EPN analogue output gain of baseband controller after DAC	03	018dB	6dB steps
outCalibrate[n] n = 04	digital attenuation of output signal after speech decoder, before summation of sidetone and DAC	032767	-∞+6dB	20 * log (2 * outCalibrate[n]/ 32768)
	present for each volume step[n]			
sideTone	digital attenuation of sidetone	032767	-∞0dB	20 * log (sideTone/
	is corrected internally by outBbcGain			32768)
	to obtain a constant sidetone			
	independently to output volume			

Note: The parameters inCalibrate, outCalibrate and sideTone accept also values from 32768 to 65535. These values are internally truncated to 32767.

Function	Signal name	ю	Signal form and level	Comment
Reset	CCRST	0	R _O ≈ 47Ω V _{oL} max = 0.25V at I = +1mA V _{OH} min = 2.5V at I = -0.5mA V _{OH} max = 2.95V	All signals of SIM interface are protected against ESD with a special diode array.
Data IO	CCIO	I/O	$\begin{array}{l} {\sf R}_{\sf I}\approx 4.7 k\Omega \\ {\sf V}_{\sf IL} max = 0.75 {\sf V} \\ {\sf V}_{\sf IL} min = -0.3 {\sf V} \\ {\sf V}_{\sf IH} min = 2.1 {\sf V} \\ {\sf V}_{\sf IH} max = {\sf CCVCCmin} + 0.3 {\sf V} = 3.05 {\sf V} \\ {\sf R}_{\sf I}\approx 1000 \end{array}$	
			R _O ≈ 100Ω V _{OL} max = 0.3V at I = +1mA V _{OH} min = 2.5V at I = -0.5mA V _{OH} max = 2.95V	
Clock	CCCLK	0	R _O ≈ 100Ω V _{OL} max = 0.3V at I = +1mA V _{OH} min = 2.5V at I = -0.5mA V _{OH} max = 2.95V	
Supply	CCVCC	0	$V_{0}min = 2.75V$ $V_{0}typ = 2.85V$ $V_{0}max = 2.95V$ $I_{0}max = -20mA$	
Ground	CCGND		Ground	

Table 10. (Characteristics	SIM	interface	for	uso with	31/	carde
		SIIVI	Intenace	101		30	Carus

Table 20: Characteristics SIM interface for use with 1.8V cards

Function	Signal name	ю	Signal form and level	Comment
Reset	CCRST	0	R _O ≈ 47Ω V _{OL} max = 0.25V at I = +1mA V _{OH} min = 1.45V at I = -0.5mA V _{OH} max = 1.90V	All signals of SIM interface are protected against ESD with a special diode array.
Data IO	CCIO	I/O	$\begin{array}{l} {\sf R}_{\sf I}\approx 4.7 k\Omega \\ {\sf V}_{\sf IL}max=0.45 {\sf V} \\ {\sf V}_{\sf IH}min=1.35 {\sf V} \\ {\sf V}_{\sf IH}max={\sf CCVCCmin}+0.3 {\sf V}=2.00 {\sf V} \\ {\sf R}_{\sf O}\approx 100 \Omega \\ {\sf V}_{\sf OL}max=0.3 {\sf V} \text{ at } {\sf I}=+1 {\sf mA} \\ {\sf V}_{\sf OH}min=1.45 {\sf V} \text{ at } {\sf I}=-0.5 {\sf mA} \\ {\sf V}_{\sf OH}max=1.90 {\sf V} \end{array}$	
Clock	CCCLK	0	R _O ≈ 100Ω V _{OL} max = 0.3V at I = +1mA V _{OH} min = 1.45V at I = -0.5mA V _{OH} max = 1.90V	
Supply	CCVCC	0	$V_{o}min = 1.70V$ $V_{o}typ = 1.80V$ $V_{o}max = 1.90V$ $I_{o}max = -20mA$	
Ground	CCGND		Ground	

Table 21: Characteristics GPIOs

Function	Signal name	ю	Signal form and level	Comment
General Purpose Input/Output	IO1 IO2 IO3 IO4 IO5 IO6 IO7 IO8 IO9 IO10	I/O I/O I/O I/O I/O I/O I/O I/O I/O	$R_{0} \approx 100\Omega$ $V_{OL}max = 0.4V \text{ at I} = 2mA$ $V_{OH}min = 2.50V \text{ at I} = -0.5mA$ $V_{OH}max = 3.05V$ $V_{IL}max = 0.8V$ $V_{IH}min = 2.0V$ $V_{IH}max = 3.05V$	If unused keep pins with a pull up or pull down resistor while the GPIO is set to input. Alternatively IO10 can be used as pulse counter (input frequency range of 0Hz to 1000Hz).

Table 22: Characteristics I2C interface

Table 22. Cha	aracteristics I2C in	je		
Function	Signal name	ю	Signal form and level	Comment
I ² C interface	I2CCLK_SPICLK	0	R _o ≈ 33Ω V _{oL} max = 0.25V at I = 2mA V _{oH} min = 2.50V at I = -0.5mA V _{oH} max = 3.05V	I2CDAT is configured as Open Drain and needs a pull- up resistor in the host application. According to the I2C Bus
	I2CDAT_SPIDO	I/O	$R_{O} \approx 33\Omega$ $V_{OL}max = 0.25V \text{ at } I = 2mA$ $V_{IL}max = 0.8V$ $V_{IH}min = 2.0V$ $V_{IH}max = 3.05V$	Specification Version 2.1 for the fast mode a rise time of max. 300ns is permitted. There is also a maximum V_{OL} =0.4V at 3mA specified. The value of the pull-up depends on the capacitive load of the whole system (I2C Slave + lines). The maximum sink current of I2CDAT and I2CCLK is 4mA. If lines are unused keep pins open.

Table 23: Characteristics SPI interface

Function	Signal name	ю	Signal form and level	Comment
SPI1	I2CCLK_SPICLK	0	R ₀ ≈ 33Ω V _{ΩI} max = 0.25V at I = 2mA	If the Serial Peripheral Interface 1 active I ² C interface
Serial Peripheral	I2CDAT_SPIDO	0	V_{OH} min = 2.50V at I = -0.5mA V_{OH} max = 3.05V If lines are unused ke	
Interface 1	SPICS	0		If lines are unused keep pins
	SPIDI	I	V _{IL} max = 0.8V V _{IH} min = 2.0V V _{IH} max = 3.05V	open.

Function	Signal name	Ю	Signal form and level	Comment
Analog/ Digital	Input 1: AD1 IN P	1	Single ended input voltage V _I min = 500mV, V _I max = 6.0V	AD1_IN and AD2_IN are balanced lines and
Converter balanced input	AD1_IN_N	I	Differential Input Voltage min = 0V, V _I max = 5.0V Underflow: V _i ≥50mV Overflow: V _i ≥5050 mV	multiplexed with an analog switch. Both inputs are filtered by a low pass
	AD2_IN_P AD2_IN_N	I I	Ri single ended $\approx 600k$ Ri balanced $\approx 1200k$	
			Cut-off frequency: f _C = 30Hz	
			Common-mode rejection ratio: CMRR >60dB	
			Sensitivity, accuracy: 2400 steps @ 500mV 1step = 2.08mV	
			Offset:+/- 2.08mV	
			Measurement interval 100ms – 30s selectable by AT command	

Table 24: Characteristics ADC interface

Table 25: RF Connector

Parameter	Conditions	Min.	Typical	Max.	Unit
GPRS connectivity	GPRS multislot class 12				
	Time slots Rx			4	
	Time slots Tx			4	
GPRS coding schemes	Full implementation CS-1,CS-2,CS-3, CS-4				
GSM Class	Small MS class B				
Frequency range	EGSM 850	824		894	MHz
	GSM 900	880		1785	MHz
	GSM 1800	1710		1880	MHz
	GSM 1900	1850		1990	MHz
Receiver input Sensitivity @	EGSM 850	-102			dBm
antenna connector	GSM 900	-102			dBm
Under all propagation conditions according to GSM	GSM 1800	-102			dBm
Spec.	GSM 1900	-102			dBm
Receiver input Sensitivity @	EGSM 850	-102	-105		dBm
antenna connector	GSM 900	-102	-105		dBm
BER Class II<=2.43%	GSM 1800	-102	-105		dBm
@ static input level (no fading)	GSM 1900	-102	-105		dBm
RF power @ antenna	EGSM 850		31,9		dBm
connector (50Ω Load)	GSM 900		31,9		dBm
Under normal conditions 3)	GSM 1800		29,2		dBm
	GSM 1900		29,2		dBm

6 Full Type Approval

The Siemens reference setup submitted to type approve TC65 Terminal consists of the following components:

- TC65 Terminal with approved GSM module TC65
- Votronic Handset type
- PC as MMI
- Power Supply: Mains adapter Sphere Design Type 39020
- GPIO connector cable with pull down resistors. Please note that this cable is not available for customer.

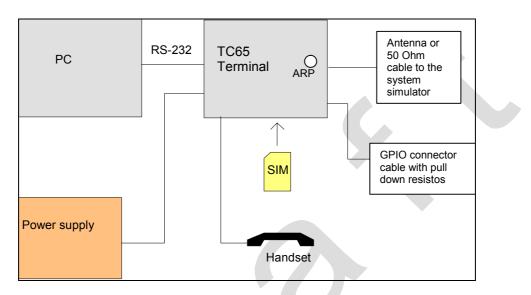


Figure 17: Reference equipment for approval

For ordering information please refer to Chapter 7.

6.1 Cable Requirements

The cable length of following interfaces may not exceed the maximum of 3m:

- Serial interface (RS232)
- Audio interface
- Antenna interface
- ADC inputs
- GPIOs

It is recommended to keep the digital lines for I²C-, SPI- lines as short as possible (\leq 150mm).

6.2 **Restrictions**

Later enhancements and modifications beyond the certified configuration require extra approvals. Each supplementary approval process includes submittal of the technical documentation as well as testing of the changes made.

- No further approvals are required for customer applications that comply with the approved TC65 Terminal configuration.
- Extra approval must be obtained for applications using other accessories than those included in the approved TC65 Terminal configuration (handset, power supply, MMI implementation supported by AT commands).

6.3 CE Conformity

The TC65 Terminal meets the requirements of the EU directives listed below:

- R&TTE Directive 1999/5/EG
- LVD 73/23/EEC
- EMC conformity in accordance with Directive 89/336/EEC

6.4 Electromagnetic Compatibility (EMC)

The TC65 Terminal meets EN 301489-7 requirements of equipment for vehicular and fixed use.

(Note: V_{POWER} voltage dip or interruption corresponding to a reduction of the supply voltage of >30% for >1ms does reset or shut down the terminal.)

The TC65 Terminal does not resist against test pulse 5 according ISO 7637-2 (load dump at vehicles 24 volt supply voltage). The internal slow acting, not removable fuse will be damaged. It's recommended to use an external fast acting fuse 1.25A with melting integral $I^2t (0.9...13)A^2s$.

7 List of Parts and Recommended Accessories

Table 26: List of parts and accessories

Description	Supplier	Ordering information
TC65 Terminal	Siemens	Siemens ordering number: L36880-N8670-A100
Mounting kit for top/hat rail installation		TBD
Power supply unit	Sphere Design	Ordering number: 39020
Primary adapter (US)		Ordering number: 39004
		Sphere Design Saarpfalz-Park 17
		D-66450 Bexbach / Saar
		Phone: +49-6826-5200-0 Fax: +49-6826-5200-25
		E-Mail: info@spheredesign.de
		http://www.spheredesign.de
Handset	Votronic	Ordering number: HH-SI-30.3/V1.1/0
		Votronic GmbH
		Saarbrücker Str. 8
		D-86386 St. Ingbert
		Phone: +49-6894-9255-44
		Fax: +49-6894-9255-88
Antenna Magnet. Mount		
US (GSM 850 +GSM 1900)	Smarteq	MiniMag 1140.26
EU (GSM 900 +GSM 1800)	Smarteq	MiniMag 1140.27
,		
		E-Mail: info@smarteq.se
		http://www.smarteq.com
Direct Mount		
US (GSM 850 +GSM 1900)	Bondale	ТВД
EU (GSM 900 +GSM 1800)	Bondale	TBD
		http://www.bondale.com
	Radiall	R380.900.307
		http://www.radiall.com
	1	nap

SIEMENS

Description	Supplier	Ordering information
GPIO-Connector	Tyco Electronics AMP	Ordering Numbers: Receptacle Housing Micro Mate-N_LOK 3mm: 2-794617-4
		Crimp Snap_In Receptacle Contacts: 79460-1 (24 pieces/housing for full assembly)
		Hand Tool CERTI-CRIMP II Straight: 91501-1
		http://www.tycoelectronics.com/cust.stm
Rail Clip	Firma Richard Wöhr GmbH	Ordering number: Hutsclip/AL/0002 Richard Wöhr GmbH Gräfenau 58-60 D-75339 Höfen/Enz Phone: +49-7081-9540-0 Fax: +49-7081-9540-90 E-Mail: <u>info-ig@woehrgmbh.de</u> http://www.industriegehaeuse.woehrgmbh.de
Screws for Rail Clip	EJOT GmbH & Co. KG	Ordering number: EJOT Delta PT Screw WN5454,40x11-S http://www.ejot.de