SIEMENS

TC65 Siemens Cellular Engine

Version: 00.302 DocID: TC65_HD_V00.302

Document Name:	TC65 Hardware Interface Description
Version:	00.302
Date:	March 10, 2005
Docld:	TC65_HD_V00.302
Status:	Strictly confidential / Draft

General note

Product is deemed accepted by Recipient and is provided without interface to Recipient's products. The Product constitutes pre-release version and code and may be changed substantially before commercial release. The Product is provided on an "as is" basis only and may contain deficiencies or inadequacies. The Product is provided without warranty of any kind, express or implied. To the maximum extent permitted by applicable law, Siemens further disclaims all warranties, including without limitation any implied warranties of merchantability, fitness for a particular purpose and noninfringement of third-party rights. The entire risk arising out of the use or performance of the Product and documentation remains with Recipient. This Product is not intended for use in life support appliances, devices or systems where a malfunction of the product can reasonably be expected to result in personal injury. Applications incorporating the described product must be designed to be in accordance with the technical specifications provided in these guidelines. Failure to comply with any of the required procedures can result in malfunctions or serious discrepancies in results. Furthermore, all safety instructions regarding the use of mobile technical systems, including GSM products, which also apply to cellular phones must be followed. Siemens AG customers using or selling this product for use in any applications do so at their own risk and agree to fully indemnify Siemens for any damages resulting from illegal use or resale. To the maximum extent permitted by applicable law, in no event shall Siemens or its suppliers be liable for any consequential, incidental, direct, indirect, punitive or other damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information or data, or other pecuniary loss) arising out the use of or inability to use the Product, even if Siemens has been advised of the possibility of such damages. Subject to change without notice at any time.

Copyright

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

Copyright © Siemens AG 2005

Contents

1	Intro	duction	7
	1.1	Related Documents	7
	1.2	Terms and Abbreviations	8
	1.3	Type Approval	11
	1.4	Safety Precautions	13
2	Prod	uct Concept	15
2	2.1	Key Features at a Glance	
	2.2	TC65 System Overview	
	2.3	Circuit Concept	
		•	
3		ication Interface	
	3.1	Power Supply	
		3.1.1 Minimizing Power Losses	
		3.1.2 Measuring the Supply Voltage V _{BATT+}	
	~ ~	3.1.3 Monitoring Power Supply by AT Command	
	3.2	Power Up / Power Down Scenarios	
		3.2.1 Turn on TC65	
		3.2.1.1 Turn on TC65 Using Ignition Line IGT	
		3.2.1.2 Turn on TC65 Using the VCHARGE Signal	25
		3.2.1.3 Reset TC65 via AT+CFUN Command	
		3.2.2 Turn off TC653.2.2.1 Turn off TC65 Using AT Command	
		3.2.2.2 Leakage Current in Power Down Mode	
		3.2.3 Automatic Shutdown	
		3.2.3.1 Temperature Dependent Shutdown	
		3.2.3.2 Temperature Control during Emergency call	
		3.2.3.3 Undervoltage Shutdown if Battery NTC is Present	
		3.2.3.4 Undervoltage Shutdown if no Battery NTC is Present	
		3.2.3.5 Overvoltage Shutdown	
	3.3	Automatic GPRS Multislot Class Change	
	3.4	Charging Control.	
		3.4.1 Battery Pack Requirements	
		3.4.2 Batteries Recommended for Use with TC65	34
		3.4.3 Charger Requirements	35
		3.4.4 Implemented Charging Technique	35
		3.4.5 Operating Modes during Charging	36
	3.5	RTC Backup	37
	3.6	SIM Interface	
	3.7	Serial Interface ASC0	
	3.8	Serial Interface ASC1	
	3.9	USB Interface	
		3.9.1 Installing the USB Modem Driver	
		I ² C Interface	
	3.11	Audio Interfaces	
		3.11.1 Speech Processing	
		3.11.2 Microphone Circuit	
		3.11.2.1 Single-ended Microphone Input	
		3.11.2.2 Differential Microphone Input	
		3.11.2.3 Line Input Configuration with OpAmp	
		3.11.3 Loudspeaker Circuit	00

	o 40	3.11.4 Digital Audio Interface DAI	
	3.12	Control Signals	
		3.12.1 Synchronization Signal	
		3.12.2 Using the SYNC Pin to Control a Status LED	.53
4	Ante	enna Interface	.54
	4.1	Antenna Installation	.54
	4.2	Antenna Pad	.56
		4.2.1 Suitable Cable Types	.56
	4.3	Antenna Connector	.57
5	Elec	trical, Reliability and Radio Characteristics	.61
	5.1	Absolute Maximum Ratings	
	5.2	Operating Temperatures	
	5.3	Pin Assignment and Signal Description	
	5.4	Power Supply Ratings	
	5.5	Electrostatic Discharge	.70
	5.6	Reliability Characteristics	.71
6	Mec	hanics	.72
	6.1	Mechanical Dimensions of TC65	.72
	6.2	Mounting TC65 to the Application Platform	
	6.3	Board-to-Board Application Connector	
7	Sam	ple Application	78
•			
8	Refe	rence Approval	.80
	8.1	Reference Equipment for Type Approval	
	8.2	Compliance with FCC Rules and Regulations	.81
9	App	endix	.82
	9.1	List of Parts and Accessories	.82
	9.2	Fasteners and Fixings for Electronic Equipment	
		9.2.1 Fasteners from German Supplier ETTINGER GmbH	
	9.3	Data Sheets of Recommended Batteries	

Tables

Table 1: Temperature dependent behavior	30
Table 2: Specifications of battery packs suitable for use with TC65	34
Table 3: Comparison Charge-only and Charge mode	36
Table 4: AT commands available in Charge-only mode	36
Table 5: Signals of the SIM interface (board-to-board connector)	38
Table 6: DCE-DTE wiring of ASC0	40
Table 7: DCE-DTE wiring of ASC1	41
Table 9: Return loss in the active band	54
Table 10: Product specifications of U.FL-R-SMT connector	57
Table 11: Material and finish of U.FL-R-SMT connector and recommended plugs	58
Table 12: Ordering information for Hirose U.FL Series	60
Table 13: Absolute maximum ratings under non-operating conditions	61
Table 14: Operating temperatures	61
Table 15: Signal description	63
Table 16: Power supply ratings	68
Table 17: Current consumption during transmit burst	69
Table 18: Measured electrostatic values	70
Table 19: Summary of reliability test conditions	71
Table 20: Technical specifications of Molex board-to-board connector	75
Table 21: List of parts and accessories	82
Table 22: Molex sales contacts (subject to change)	83
Table 23: Hirose sales contacts (subject to change)	83

Figures

Figures	
Figure 1: TC65 system overview Figure 2: TC65 block diagram	18
Figure 2: TC65 block diagram	19
Figure 3: Power supply limits during transmit burst	
Figure 4: Position of the reference points BATT+ and GND	
Figure 5: Power-on with operating voltage at BATT+ applied before activating IGT	
Figure 6: Power-on with IGT held low before switching on operating voltage at BATT+	
Figure 7: Signal states during turn-off procedure	
Figure 8: Battery pack circuit diagram	
Figure 9: RTC supply from capacitor	
Figure 10: RTC supply from rechargeable battery	
Figure 11: RTC supply from non-chargeable battery	
Figure 12: Serial interface ASC0	
Figure 13: Serial interface ASC1	
Figure 14: USB circuit	
Figure 15: I2C interface connected to VCC of application	
Figure 16: I2C interface connected to VEXT line of TC65	45
Figure 17: Audio block diagram	
Figure 18: Single ended microphone input	
Figure 19: Differential microphone input	
Figure 20: Line input configuration with OpAmp	
Figure 21: Differential loudspeaker configuration	50
Figure 22: Single ended loudspeaker configuration	
Figure 25: SYNC signal during transmit burst	
Figure 26: LED Circuit (Example)	
Figure 27: Never use antenna connector and antenna pad at the same time	55
Figure 28: Restricted area around antenna pad	55

Figure 29: Mechanical dimensions of U.FL-R-SMT connector	
Figure 30: U.FL-R-SMT connector with U.FL-LP-040 plug	
Figure 31: U.FL-R-SMT connector with U.FL-LP-066 plug	
Figure 32: Specifications of U.FL-LP-(V)-040(01) plug	
Figure 33: Pin assignment (component side of TC65)	62
Figure 34: TC65 – top view	72
Figure 35: Dimensions of TC65	73
Figure 36: Molex board-to-board connector 52991-0808 on TC65	76
Figure 37: Mating board-to-board connector 53748-0808 on application	77
Figure 38: TC65 sample application (draft)	79
Figure 39: Reference equipment for Type Approval	
Figure 40: Lithium Ion battery from VARTA	
Figure 41: Lithium Polymer battery from VARTA	

1 Introduction

This document describes the hardware of the Siemens TC65 module that connects to the cellular device application and the air interface. It helps you quickly retrieve interface specifications, electrical and mechanical details and information on the requirements to be considered for integrating further components.

1.1 Related Documents

- [1] TC65 AT Command Set
- [2] TC65 Release Notes 00.302
- [3] DSB75 Support Box Evaluation Kit for Siemens Cellular Engines
- [4] Application 07: Rechargeable Lithium Batteries in GSM Applications (not yet available)
- [5] Multiplexer User's Guide (not yet available)

1.2 Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AGC	Automatic Gain Control
ANSI	American National Standards Institute
ARFCN	Absolute Radio Frequency Channel Number
ARP	Antenna Reference Point
ASC0 / ASC1	Asynchronous Controller. Abbreviations used for first and second serial interface of TC65
В	Thermistor Constant
B2B	Board-to-board connector
BER	Bit Error Rate
BTS	Base Transceiver Station
CB or CBM	Cell Broadcast Message
CE	Conformité Européene (European Conformity)
CHAP	Challenge Handshake Authentication Protocol
CPU	Central Processing Unit
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DAI	Digital Audio Interface
dBm0	Digital level, 3.14dBm0 corresponds to full scale, see ITU G.711, A-law
DCE	Data Communication Equipment (typically modems, e.g. Siemens GSM engine)
DCS 1800	Digital Cellular System, also referred to as PCN
DRX	Discontinuous Reception
DSB	Development Support Box
DSP	Digital Signal Processor
DSR	Data Set Ready
DTE	Data Terminal Equipment (typically computer, terminal, printer or, for example, GSM application)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EIRP	Equivalent Isotropic Radiated Power
EMC	Electromagnetic Compatibility
ERP	Effective Radiated Power

ESDElectrostatic DischargeETSEuropean Telecommunication StandardFCCFederal Communications Commission (U.S.)	
FCC Federal Communications Commission (U.S.)	
FDMA Frequency Division Multiple Access	
FR Full Rate	
GMSK Gaussian Minimum Shift Keying	
GPIO General Purpose Input/Output	
GPRS General Packet Radio Service	
GSM Global Standard for Mobile Communications	
HiZ High Impedance	
HR Half Rate	
I/O Input/Output	
IC Integrated Circuit	
IMEI International Mobile Equipment Identity	
ISO International Standards Organization	
ITU International Telecommunications Union	
kbps kbits per second	
LED Light Emitting Diode	
Li-Ion / Li+ Lithium-Ion	
Li battery Rechargeable Lithium Ion or Lithium Polymer battery	
Mbps Mbits per second	
MMI Man Machine Interface	
MO Mobile Originated	
MS Mobile Station (GSM engine), also referred to as TE	
MSISDN Mobile Station International ISDN number	
MT Mobile Terminated	
NTC Negative Temperature Coefficient	
OEM Original Equipment Manufacturer	
PA Power Amplifier	
PAP Password Authentication Protocol	
PBCCH Packet Switched Broadcast Control Channel	
PCB Printed Circuit Board	
PCL Power Control Level	
PCM Pulse Code Modulation	
PCN Personal Communications Network, also referred to as DCS 1800	
PCS Personal Communication System, also referred to as GSM 1900	
PDU Protocol Data Unit	
PLL Phase Locked Loop	

Abbreviation	Description
PPP	Point-to-point protocol
PSK	Phase Shift Keying
PSU	Power Supply Unit
R&TTE	Radio and Telecommunication Terminal Equipment
RAM	Random Access Memory
RF	Radio Frequency
RMS	Root Mean Square (value)
ROM	Read-only Memory
RTC	Real Time Clock
RTS	Request to Send
Rx	Receive Direction
SAR	Specific Absorption Rate
SELV	Safety Extra Low Voltage
SIM	Subscriber Identification Module
SMS	Short Message Service
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
ТА	Terminal adapter (e.g. GSM engine)
TDMA	Time Division Multiple Access
TE	Terminal Equipment, also referred to as DTE
Тх	Transmit Direction
UART	Universal asynchronous receiver-transmitter
URC	Unsolicited Result Code
USB	Universal Serial Bus
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
Phonebook abb	previations
FD	SIM fixdialing phonebook
LD	SIM last dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT calls (missed calls)
ME	Mobile Equipment phonebook
ON	Own numbers (MSISDNs) stored on SIM or ME
RC	Mobile Equipment list of received calls
SM	SIM phonebook

1.3 Type Approval

TC65 is designed to comply with the directives and standards listed below. Please note that the product is still in a pre-release state and, therefore, type approval and testing procedures have not yet been completed.

European directives

99/05/EC	"Directive of the European Parliament and of the council of 9 March		
	1999 on radio equipment and telecommunications termin	nal	
	equipment and the mutual recognition of their conformity", in sho	ort	
	referred to as R&TTE Directive 1999/5/EC		

89/336/EC Directive on electromagnetic compatibility

73/23/EC Directive on electrical equipment designed for use within certain voltage limits (Low Voltage Directive)

Standards of North American Type Approval

CFR Title 47 "Code of Federal Regulations, Part 22 and Part 24 (Telecommunications, PCS)"; US Equipment Authorization FCC

UL 60 950 "Product Safety Certification" (Safety requirements)

- NAPRD.03 "Overview of PCS Type certification review board Mobile Equipment Type Certification and IMEI control" PCS Type Certification Review board (PTCRB), Version 3.1.0
- RSS133 (Issue2) Canadian Standard

Standards of European Type Approval

- 3GPP TS 51.010-1 "Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification"
- ETSI EN 301 511 "V7.0.1 (2000-12) Candidate Harmonized European Standard (Telecommunications series) Global System for Mobile communications (GSM); Harmonized standard for mobile stations in the GSM 900 and DCS 1800 bands covering essential requirements under article 3.2 of the R&TTE directive (1999/5/EC) (GSM 13.11 version 7.0.1 Release 1998)"

GCF-CC "Global Certification Forum - Certification Criteria" V3.16.0

- ETSI EN 301 489-1 "V1.2.1 Candidate Harmonized European Standard (Telecommunications series) Electro Magnetic Compatibility and Radio spectrum Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common Technical Requirements"
- ETSI EN 301 489-7 "V1.1.1 Candidate Harmonized European Standard (Telecommunications series) Electro Magnetic Compatibility and Radio spectrum Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 7: Specific conditions for mobile and portable radio and ancillary equipment of digital cellular radio telecommunications systems (GSM and DCS)"

EN 60 950 Safety of information technology equipment (2000)

Requirements of quality

IEC 60068 Environmental testing

DIN EN 60529 IP codes

Compliance with international rules and regulations

Manufacturers of mobile or fixed devices incorporating TC65 modules are advised to have their completed product tested and approved for compliance with all applicable national and international regulations. As a quad-band GSM/GPRS engine designed for use on any GSM network in the world, TC65 is required to pass all approvals relevant to operation on the European and North American markets. For the North American market this includes the Rules and Regulations of the Federal Communications Commission (FCC) and PTCRB, for the European market the R&TTE Directives and GCF Certification Criteria must be fully satisfied.

The FCC Equipment Authorization granted to the TC65 Siemens reference application is valid *only* for the equipment described in Section 8.1.

SAR requirements specific to portable mobiles

Mobile phones, PDAs or other portable transmitters and receivers incorporating a GSM module must be in accordance with the guidelines for human exposure to radio frequency energy. This requires the Specific Absorption Rate (SAR) of portable TC65 based applications to be evaluated and approved for compliance with national and/or international regulations.

Since the SAR value varies significantly with the individual product design manufacturers are advised to submit their product for approval if designed for portable use. For European and US markets the relevant directives are mentioned below. It is the responsibility of the manufacturer of the final product to verify whether or not further standards, recommendations or directives are in force outside these areas.

Products intended for sale on US markets

ES 59005/ANSI C95.1 Considerations for evaluation of human exposure to Electromagnetic Fields (EMFs) from Mobile Telecommunication Equipment (MTE) in the frequency range 30MHz - 6GHz

Products intended for sale on European markets

EN 50360

Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz - 3GHz)

Note: Usage of TC65 in a fixed, mobile or portable application is not allowed without a new FCC certification.

1.4 Safety Precautions

The following safety precautions must be observed during all phases of the operation, usage, service or repair of any cellular terminal or mobile incorporating TC65. Manufacturers of the cellular terminal are advised to convey the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. Failure to comply with these precautions violates safety standards of design, manufacture and intended use of the product. Siemens AG assumes no liability for customer's failure to comply with these precautions.

When in a hospital or other health care facility, observe the restrictions on the use of mobiles. Switch the cellular terminal or mobile off, if instructed to do so by the guidelines posted in sensitive areas. Medical equipment may be sensitive to RF energy.

The operation of cardiac pacemakers, other implanted medical equipment and hearing aids can be affected by interference from cellular terminals or mobiles placed close to the device. If in doubt about potential danger, contact the physician or the manufacturer of the device to verify that the equipment is properly shielded. Pacemaker patients are advised to keep their hand-held mobile away from the pacemaker, while it is on.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it cannot be switched on inadvertently. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communications systems. Failure to observe these instructions may lead to the suspension or denial of cellular services to the offender, legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. Remember that interference can occur if it is used close to TV sets, radios, computers or inadequately shielded equipment. Follow any special regulations and always switch off the cellular terminal or mobile wherever forbidden, or when you suspect that it may cause interference or danger.

Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for speakerphone operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

Speakerphones must be installed by qualified personnel. Faulty installation or operation can constitute a safety hazard.

IMPORTANT!

SOS

Cellular terminals or mobiles operate using radio signals and cellular networks. Because of this, connection cannot be guaranteed at all times under all conditions. Therefore, you should never rely solely upon any wireless device for essential communications, for example emergency calls.

Remember, in order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency calls if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may need to deactivate those features before you can make an emergency call.

Some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

2 Product Concept

2.1 Key Features at a Glance

Feature	Implementation	
General		
Frequency bands	Quad band: GSM 850/900/1800/1900MHz	
GSM class	Small MS	
Output power (according to Release 99, V5)	Class 4 (+33dBm ±2dB) for EGSM850 Class 4 (+33dBm ±2dB) for EGSM900 Class 1 (+30dBm ±2dB) for GSM1800 Class 1 (+30dBm ±2dB) for GSM1900 The values stated above are maximum limits. According to	
	Release 99, Version 5, the maximum output power in a multislot configuration may be lower. The nominal reduction of maximum output power varies with the number of uplink timeslots used and amounts to 3.0dB for 2Tx, 4.8dB for 3Tx and 6.0dB for 4Tx.	
Power supply	3.2V to 4.5V	
Power consumption	Sleep mode: max. TBD Power down mode: typically 50µA	
Java platform	Java Virtual Machine with interfaces to AT Parser, Serial Interface, FlashFileSystem and TCP/IP Stack. Major benefits: seamless integration into Java applications, ease of programming, no need for application microcontroller, extremely cost-efficient hardware and software design – ideal platform for industrial GSM applications.	
Operating temperature	-30°C to +65°C ambient temperature Auto switch-off at +90°C board temperature (preliminary)	
Physical	Dimensions: 33.9mm x 44.6mm x max. 3.5mm Weight: approx. 7.5g	
GSM / GPRS features		
Data transfer	 GPRS Multislot Class 12 Full PBCCH support Mobile Station Class B Coding Scheme 1 – 4 	
	 CSD V.110, RLP, non-transparent 2.4, 4.8, 9.6, 14.4kbps USSD 	
	PPP-stack for GPRS data transfer	

SIEMEN	IS
--------	----

Feature	Implementation	
SMS	 Point-to-point MT and MO Cell broadcast Text and PDU mode Storage: SIM card plus 25 SMS locations in mobile equipment Transmission of SMS alternatively over CSD or GPRS. Preferred mode can be user defined. 	
Fax	Group 3; Class 1	
Audio	 Speech codecs: Half rate HR (ETS 06.20) Full rate FR (ETS 06.10) Enhanced full rate EFR (ETS 06.50/06.60/06.80) Adaptive Multi Rate AMR Speakerphone operation Echo cancellation, noise suppression DTMF 7 ringing tones 	
Software		
AT commands	AT-Hayes GSM 07.05 and 07.07, Siemens AT commands for RIL compatibility (NDIS/RIL)	
Microsoft [™] compatibility	RIL / NDIS for Pocket PC and Smartphone	
SIM Application Toolkit	SAT Release 99	
TCP/IP stack	Access by AT commands	
IP adresses	IP version 6	
Remote SIM Access	TC65 supports Remote SIM Access. RSA enables TC65 to use a remote SIM card via its serial interface, in addition to the SIM card locally attached to the dedicated lines of the application interface. In a vehicle mounted scenario, for example, this allows the driver to access a mobile phone brought into the car from a car- embedded phone. The connection between both phones can be a Bluetooth wireless link or a serial link, e.g. via the car cradle. The necessary protocols and procedures are implemented according to the "SIM Access Profile Interoperability Specification of the Bluetooth Special Interest Group".	
Firmware update	Download over serial interface ASC0 Download over SIM interface Download over USB	
Interfaces		
2 serial interfaces	 ASC0 8-wire modem interface with status and control lines, unbalanced, asynchronous 1.2kbps to 460kbps Autobauding TBD Supports RTS0/CTS0 hardware handshake and software XON/XOFF flow control. 	

Feature	Implementation	
	Multiplex ability according to GSM 07.10 Multiplexer Protocol.	
	 ASC1 4-wire, unbalanced asynchronous interface 1.2kbps to 460kbps Autobauding TBD Supports RTS1/CTS1 hardware handshake and software XON/XOFF flow control 	
USB	Supports a USB 2.0 Full Speed (12Mbit/s) slave interface.	
l ² C	I ² C bus for transmission rates up to 400kbps Alternatively, all pins of the I ² C interface are configurable as SPI.	
SPI	Two interfaces to be used alternatively to other interfaces. Programmable via AT command. If the SPI is active I ² C interface is not available.	
Audio	 2 analog interfaces 1 digital interface (PCM)	
SIM interface	Supported SIM cards: 3V, 1.8V	
Antenna	50Ohms. External antenna can be connected via antenna connector or solderable pad.	
Module interface	80-pin board-to-board connector	
Power on/off, Reset		
Power on/off	 Switch-on by hardware pin IGT Switch-off by AT command (AT^SMSO) Automatic switch-off in case of critical temperature and voltage conditions. 	
Reset	 Orderly shutdown and reset by AT command Emergency reset by hardware pin EMERG_RST 	
Special features		
Charging	Supports management of rechargeable Lithium Ion and Lithium Polymer batteries	
Real time clock	Timer functions via AT commands	
GPIO	10 I/O pins of the application interface programmable as GPIO. Programming is done via AT commands.	
Phonebook	SIM and phone	
Evaluation kit		
DSB75	DSB75 Evaluation Board designed to test and type approve Siemens cellular engines and provide a sample configuration for application engineering.	

2.2 TC65 System Overview

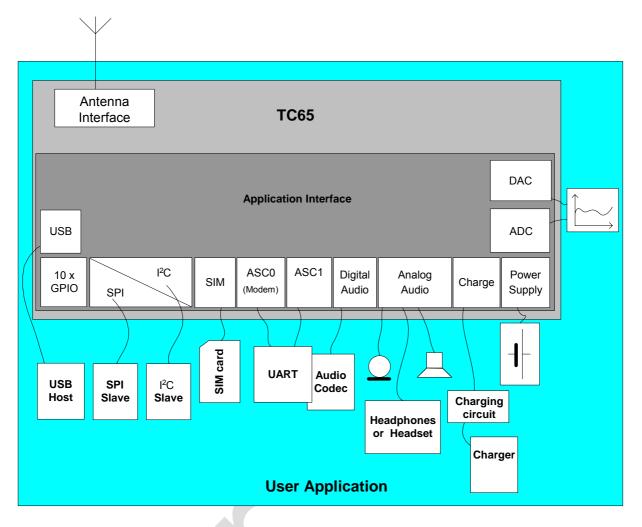


Figure 1: TC65 system overview

2.3 Circuit Concept

Figure 2 shows a block diagram of the TC65 module and illustrates the major functional components:

Baseband Block:

- Digital baseband processor with DSP
- Analog processor with power supply unit (PSU)
- Flash / SRAM (stacked)
- Application interface (board-to-board connector)

RF section:

- RF transceiver
- RF power amplifier
- RF front end
- Antenna connector

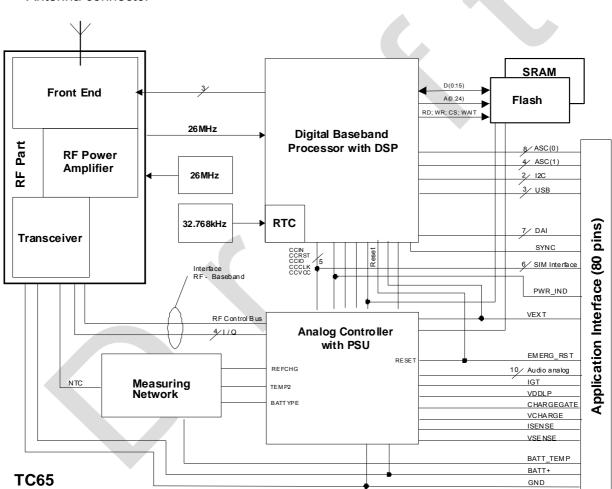


Figure 2: TC65 block diagram

3 Application Interface

TC65 is equipped with an 80-pin board-to-board connector that connects to the external application. The host interface incorporates several sub-interfaces described in the following chapters:

- Power supply see Section 3.1
- Charger interface Section 3.4
- SIM interface see Section 3.6
- Serial interface ASC0 see Section 3.7
- Serial interface ASC1 see Section 3.8
- Serial interface USB see Section 3.9.
- Serial interface I²C see Section 3.10
- Two analog audio interfaces see Section 3.11
- Digital audio interface (DAI) see Section 3.11 and 3.11.4
- Status and control lines: IGT, EMERG_RST, PWR_IND, SYNC see Table 15

3.1 Power Supply

TC65 needs to be connected to a power supply at the B2B connector (5 pins each BATT+ and GND).

The power supply of TC65 has to be a single voltage source at BATT+. It must be able to provide the peak current during the uplink transmission.

All the key functions for supplying power to the device are handled by the power management section of the analog controller. This IC provides the following features:

- Stabilizes the supply voltages for the GSM baseband using low drop linear voltage regulators.
- Switches the module's power voltages for the power up and down procedures.
- Delivers, across the VEXT pin, a regulated voltage for an external application. This voltage is not available in Power-down mode.
- SIM switch to provide SIM power supply.

3.1.1 Minimizing Power Losses

When designing the power supply for your application please pay specific attention to power losses. Ensure that the input voltage V_{BATT+} never drops below 3.2V on the TC65 board, not even in a transmit burst where current consumption can rise to typical peaks of 2A. It should be noted that TC65 switches off when exceeding these limits. Any voltage drops that may occur in a transmit burst should not exceed 400mV.

The measurement network monitors outburst and inburst values. The drop is the difference of both values. The maximum drop (Dmax) since the last start of the module will be saved. In IDLE and SLEEP mode, the module switches off if the minimum battery voltage (V_{batt} min) is reached.

Example: V_Imin = 3.2V Dmax = 0.35V

 V_{batt} min = V₁min + Dmax V_{batt}min = 3.2V + 0.35V = 3.55V

The best approach to reducing voltage drops is to use a board-to-board connection as recommended, and a low impedance power source. The resistance of the power supply lines on the host board and of a battery pack should also be considered.

Note: If the application design requires an adapter cable between both board-to-board connectors, use a flex cable as short as possible in order to minimize power losses.

Example: If the length of the flex cable reaches the maximum length of 100mm, this connection may cause, for example, a resistance of $30m\Omega$ in the BATT+ line and $30m\Omega$ in the GND line. As a result, a 2A transmit burst would add up to a total voltage drop of 120mV. Plus, if a battery pack is involved, further losses may occur due to the resistance across the battery lines and the internal resistance of the battery including its protection circuit.

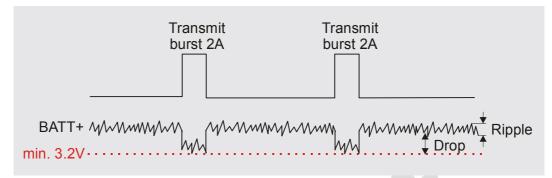


Figure 3: Power supply limits during transmit burst

3.1.2 Measuring the Supply Voltage V_{BATT+}

The reference points for measuring the supply voltage V_{BATT+} on the module are BATT+ and GND, both accessible at a capacitor located close to the board-to-board connector of the module.

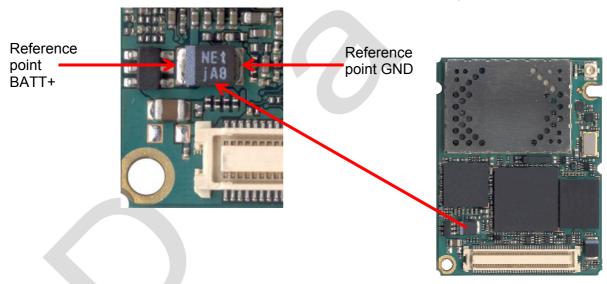


Figure 4: Position of the reference points BATT+ and GND

3.1.3 Monitoring Power Supply by AT Command

To monitor the supply voltage you can also use the AT^SBV command which returns the value related to the reference points BATT+ and GND.

The module continuously measures the voltage at intervals depending on the operating mode of the RF interface. The duration of measuring ranges from 0.5s in TALK/DATA mode to 50s when TC65 is in IDLE mode or Limited Service (deregistered). The displayed voltage (in mV) is averaged over the last measuring period before the AT^SBV command was executed.

3.2 Power Up / Power Down Scenarios

In general, be sure not to turn on TC65 while it is beyond the safety limits of voltage and temperature stated in Chapter 5. TC65 would immediately switch off after having started and detected these inappropriate conditions. In extreme cases this can cause permanent damage to the module.

3.2.1 Turn on TC65

TC65 can be started in a variety of ways as described in the following sections:

- Hardware driven start-up by IGT line: starts normal operating state (see Section 3.2.1.1)
- Software controlled reset by AT+CFUN command: starts normal operating state (see Section 3.2.1.3)
- Hardware driven start-up by VCHARGE line: starts charging algorithm and charge-only mode (see Section 3.2.1.2)
- Wake-up from Power-down mode by using RTC interrupt: starts Airplane mode

3.2.1.1 Turn on TC65 Using Ignition Line IGT

When the TC65 module is in Power-down mode, it can be started to normal operation by driving the IGT (ignition) line to ground. This must be accomplished with an open drain/collector driver to avoid current flowing into this pin.

The module will start up when both of the following two conditions are met:

- The supply voltage applied at BATT+ must be in the operating range.
- The IGT line needs to be driven low for at least 300ms.

Considering different strategies of host application design the figures below show two approaches to meet this requirement: The example in Figure 5 assumes that IGT is activated after BATT+ has already been applied. The example in Figure 6 assumes that IGT is held low before BATT+ is switched on. In either case, to power on the module, ensure that low state of IGT takes at least 300ms from the moment the voltage at BATT+ is available.

If configured to a fix baud rate (AT+IPR≠0), the module will send the URC "^SYSSTART" to notify that it is ready to operate. If autobauding is enabled (AT+IPR=0) there will be no notification.

BATT+	
IGT	t _{min} = 300ms HiZ
PWR_IND	
EMERG_RST	120ms
VEXT	
TXD0/TXD1/RTS0/R	ST1/DTR0 (driven by the application)
CTS0/CTS1/DSR0/D	CD0
	Undefined Active
Serial interfaces ASC0 and ASC1	ca. 500 ms

Figure 5: Power-on with operating voltage at BATT+ applied before activating IGT

BATT+	
	t _{min} = 300ms ◀ ────────────────────────────────────
IGT	
PWR_IND	
	120ms
EMERG_RST	
VEXT	
TXD0/TXD1/RTS0/R	ST1/DTR0 (driven by the application)
CTS0/CTS1/DSR0/D	CD0
	Undefined Active
Serial interfaces ASC0 and ASC1	ca. 500 ms

Figure 6: Power-on with IGT held low before switching on operating voltage at BATT+

3.2.1.2 Turn on TC65 Using the VCHARGE Signal

As detailed in Section 3.4.5, the charging adapter can be connected regardless of the module's operating mode.

If the charger is connected to the charger input of the external charging circuit and the module's VCHARGE pin while TC65 is off, and the battery voltage is above the undervoltage lockout threshold, processor controlled fast charging starts (see Section 3.4.4). TC65 enters a restricted mode, referred to as Charge-only mode where only the charging algorithm will be launched.

During the Charge-only mode TC65 is neither logged on to the GSM network nor are the serial interfaces fully accessible. To switch to normal operation and log on to the GSM network, the IGT line needs to be activated as described in Section 3.2.1.

3.2.1.3 Reset TC65 via AT+CFUN Command

To reset and restart the TC65 module use the command AT+CFUN. You can enter AT+CFUN=,1 or AT+CFUN=x,1, where x may be in the range from 0 to 9. See [1] for details.

If configured to a fix baud rate (AT+IPR≠0), the module will send the URC "^SYSSTART" to notify that it is ready to operate. If autobauding is enabled (AT+IPR=0) there will be no notification. To register to the network SIM PIN authentication is necessary after restart.

3.2.1.4 Reset TC65 in Case of Emergency via EMERG_RST

Caution: Use the EMERG_RST pin only when, due to serious problems, the software is not responding for more than 5 seconds. Pulling the EMERG_RST pin causes the loss of all information stored in the volatile memory since the processor restarts immediately. Therefore, this procedure is intended only for use in case of emergency, e.g. if TC65 does not respond, if reset or shutdown via AT command fails.

The EMERG_RST signal is available on the application interface. To control the EMERG_RST line it is recommended to use an open drain / collector driver.

To actually reset the TC65 module, the EMERG_RST line must be pulled to ground for \geq 10ms. After releasing the line TC65 will start again.

After hardware driven restart, notification via "^SYSSTART" URC is the same as in case of restart by IGT or AT command. To register to the network SIM PIN authentication is necessary after restart.

3.2.2 Turn off TC65

TC65 can be turned off as follows:

- Normal shutdown: Software controlled by AT^SMSO command
- Automatic shutdown: Takes effect if board or battery temperature is out of range or if undervoltage or overvoltage conditions occur.

3.2.2.1 Turn off TC65 Using AT Command

The best and safest approach to powering down TC65 is to issue the AT^SMSO command. This procedure lets TC65 log off from the network and allows the software to enter into a secure state and safe data before disconnecting the power supply. The mode is referred to as Power-down mode. In this mode, only the RTC stays active.

Before switching off the device sends the following response:

^SMSO: MS OFF

OK ^SHUTDOWN

After sending AT^SMSO do not enter any other AT commands. There are two ways to verify when the module turns off:

- Wait for the URC "^SHUTDOWN". It indicates that data have been stored non-volatile and the module turns off in less than 1 second.
- Also, you can monitor the PWR_IND pin. High state of PWR_IND definitely indicates that the module is switched off.

Be sure not to disconnect the supply voltage V_{BATT+} before the URC "^SHUTDOWN" has been issued and the PWR_IND signal has gone high. Otherwise you run the risk of losing data. Signal states during turn-off are shown in Figure 7.

While TC65 is in Power-down mode the application interface is switched off and must not be fed from any other source. Therefore, your application must be designed to avoid any current flow into any digital pins of the application interface, especially of the serial interfaces. No special care is required for the USB interface which is protected from reverse current.

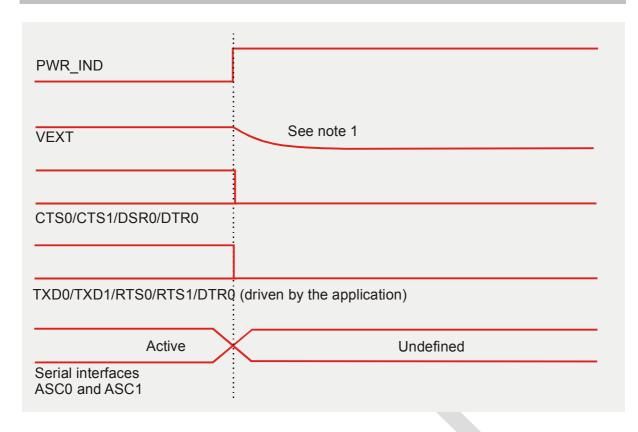


Figure 7: Signal states during turn-off procedure

Note 1: Depending on capacitance load from host application

3.2.2.2 Leakage Current in Power Down Mode

The leakage current in Power Down mode varies depending on the following conditions:

- If the supply voltage at BATT+ was disconnected and then applied again without starting up the TC65 module, the leakage current ranges between 90µA and 100µA.
- If the TC65 module is started and afterwards powered down with AT^SMSO, then the leakage current is only 50µA.

Therefore, in order to minimize the leakage current take care to start up the module at least once before it is powered down.

3.2.3 Automatic Shutdown

Automatic shutdown takes effect if:

- the TC65 board is exceeding the critical limits of overtemperature or undertemperature
- the battery is exceeding the critical limits of overtemperature or undertemperature
- undervoltage or overvoltage is detected

The automatic shutdown procedure is equivalent to the Power-down initiated with the AT^SMSO command, i.e. TC65 logs off from the network and the software enters a secure state avoiding loss of data.

Alert messages transmitted before the device switches off are implemented as Unsolicited Result Codes (URCs). The presentation of these URCs can be enabled or disabled with the two AT commands AT^SBC and AT^SCTM. The URC presentation mode varies with the condition, please see Chapters 3.2.3.1 to 3.2.3.4 for details. For further instructions on AT commands refer to [1].

3.2.3.1 Temperature Dependent Shutdown

The board temperature is constantly monitored by an internal NTC resistor located on the PCB. The NTC that detects the battery temperature must be part of the battery pack circuit as described in 3.4.1 The values detected by either NTC resistor are measured directly on the board or the battery and therefore, are not fully identical with the ambient temperature.

Each time the board or battery temperature goes out of range or back to normal, TC65 instantly displays an alert (if enabled).

• URCs indicating the level "1" or "-1" allow the user to take appropriate precautions, such as protecting the module from exposure to extreme conditions. The presentation of the URCs depends on the settings selected with the AT^SCTM write command:

AT^SCTM=1: Presentation of URCs is always enabled.

AT^SCTM=0 (default): Presentation of URCs is enabled for 15 seconds time after start-up of TC65. After 15 seconds operation, the presentation will be disabled, i.e. no alert messages can be generated.

• URCs indicating the level "2" or "-2" are instantly followed by an orderly shutdown. The presentation of these URCs is always enabled, i.e. they will be output even though the factory setting AT^SCTM=0 was never changed.

The maximum temperature ratings are stated in Table 14. Refer to Table 1 for the associated URCs. All statements are based on test conditions according to IEC 60068-2-2 (still air).

Sending temperature alert (15s after TC65 start-up, otherwise only if URC presentation enabled)		
^SCTM_A: 1	Caution: T _{amb} of battery close to overtemperature limit.	
^SCTM_B: 1	Caution: T _{amb} of board close to overtemperature limit.	
^SCTM_A: -1 Caution: T _{amb} of battery close to undertemperature limit.		
^SCTM_B: -1	Caution: T _{amb} of board close to undertemperature limit.	
^SCTM_A: 0	Battery back to uncritical temperature range.	
^SCTM_B: 0	Board back to uncritical temperature range.	
Automatic shutdown (URC appears no matter whether or not presentation was enabled)		
^SCTM_A: 2	Alert: T _{amb} of battery equal or beyond overtemperature limit. TC65 switches off.	
^SCTM_B: 2	Alert: T _{amb} of board equal or beyond overtemperature limit. TC65 switches off.	
^SCTM_A: -2	Alert: T _{amb} of battery equal or below undertemperature limit. TC65 switches off.	
^SCTM_B: -2	Alert: T _{amb} of board equal or below undertemperature limit. TC65 switches off.	

Table 1: Temperature dependent behavior

3.2.3.2 Temperature Control during Emergency call

If the temperature limit is exceeded while an emergency call is in progress the engine continues to measure the temperature, but deactivates the shutdown functionality. If the temperature is still out of range when the call ends, the module switches off immediately (without another alert message).

3.2.3.3 Undervoltage Shutdown if Battery NTC is Present

In applications where the module's charging technique is used and an NTC is connected to the BATT_TEMP terminal, the software constantly monitors the applied voltage. If the measured battery voltage is no more sufficient to set up a call the following URC will be presented:

^SBC: Undervoltage.

The message will be reported, for example, when you attempt to make a call while the voltage is close to the critical limit and further power loss is caused during the transmit burst. To remind you that the battery needs to be charged soon, the URC appears several times before the module switches off.

To enable or disable the URC use the AT^SBC command. The URC will be enabled when you enter the write command and specify the current consumption of your host application. Step by step instructions are provided in [1].

3.2.3.4 Undervoltage Shutdown if no Battery NTC is Present

The undervoltage protection is also effective in applications, where no NTC connects to the BATT_TEMP terminal. Thus, you can take advantage of this feature even though the application handles the charging process or TC65 is fed by a fixed supply voltage. All you need to do is executing the write command AT^SBC=<current> which automatically enables the presentation of URCs. You do not need to specify <current>.

Whenever the supply voltage falls below the value of 3.2V the URC

^SBC: Undervoltage

appears several times before the module switches off.

3.2.3.5 Overvoltage Shutdown

In the event of the maximum voltage of 4.6V is reached the module sends a URC and then performs an orderly shutdown. Further details: TBD

Keep in mind that several TC65 components are directly linked to BATT+ and, therefore, the supply voltage remains applied at major parts of TC65, even if the module is switched off. Especially the power amplifier is very sensitive to high voltage and might even be destroyed.

3.3 Automatic GPRS Multislot Class Change

Temperature control is also effective for operation in GPRS Multislot Class 10 and GPRS Multislot Class 12. If the board temperature increases to the limit specified for restricted operation¹⁾ while data are transmitted over GPRS, the module automatically reverts

- from GPRS Multislot Class 12 (4Tx slots) to GPRS Multislot Class 8 (1Tx),
- from GPRS Multislot Class 10 (2Tx slots) to GPRS Multislot Class 8 (1Tx)

This reduces the power consumption and, consequently, causes the board's temperature to decrease. Once the temperature drops to a value of 5 degrees below the limit of restricted operation, TC65 returns to the higher Multislot Class. If the temperature stays at the critical level or even continues to rise, TC65 will not switch back to the higher class.

After a transition from GPRS Multislot Class 12 or 10 to GPRS Multislot Class 8 a possible switchback to GPRS Multislot Class 12 or 10 is blocked for one minute.

Please note that there is not one single cause of switching over to a lower Multislot Class. Rather it is the result of an interaction of several factors, such as the board temperature that depends largely on the ambient temperature, the operating mode and the transmit power. Furthermore, take into account that there is a delay until the network proceeds to a lower or, accordingly, higher Multislot Class. The delay time is network dependent. In extreme cases, if it takes too much time for the network and the temperature cannot drop due to this delay, the module may even switch off as described in Section 3.2.3.1.

¹⁾ See Table 14 for temperature limits known as restricted operation.

3.4 Charging Control

TC65 integrates a charging management for rechargeable Lithium Ion and Lithium Polymer batteries. You can skip this chapter if charging is not your concern, or if you are not using the implemented charging algorithm.

TC65 has no on-board charging circuit. To benefit from the implemented charging management you are required to install a charging circuit within your application according to the Figure 38.

The following sections contain an overview of charging and battery specifications. Please refer to [4] for greater detail, especially regarding requirements for batteries and chargers, appropriate charging circuits, recommended batteries and an analysis of operational issues typical of battery powered GSM/GPRS applications.

3.4.1 Battery Pack Requirements

The charging algorithm has been optimized for rechargeable Lithium batteries that meet the characteristics listed below and in Table 2. It is recommended that the battery pack you want to integrate into your TC65 application is compliant with these specifications. This ensures reliable operation, proper charging and, particularly, allows you to monitor the battery capacity using the AT^SBC command (see [1] for details). Failure to comply with these specifications might cause AT^SBC to deliver incorrect battery capacity values.

- Li-Ion or Lithium Polymer battery pack specified for a maximum charging voltage of 4.2V and a recommended capacity of 1000 to 1200mAh.
- Since charging and discharging largely depend on the battery temperature, the battery pack should include an NTC resistor. If the NTC is not inside the battery it must be in thermal contact with the battery. The NTC resistor must be connected between BATT_TEMP and GND.

The B value of the NTC should be in the range: $10k\Omega \pm 5\%$ @ $25^{\circ}C$, $B_{25/85} = 3423$ K to B = 3435K $\pm 3\%$ (alternatively acceptable: $10k\Omega \pm 2\%$ @ $25^{\circ}C$, $B_{25/50} = 3370K \pm 3\%$). Please note that the NTC is indispensable for proper charging, i.e. the charging process will not start if no NTC is present.

- Ensure that the pack incorporates a protection circuit capable of detecting overvoltage (protection against overcharging), undervoltage (protection against deep discharging) and overcurrent. Due to the discharge current profile typical of GSM applications, the circuit must be insensitive to pulsed current.
- On the TC65 module, a built-in measuring circuit constantly monitors the supply voltage. In the event of undervoltage, it causes TC65 to power down. Undervoltage thresholds are specific to the battery pack and must be evaluated for the intended model. When you evaluate undervoltage thresholds, consider both the current consumption of TC65 and of the application circuit.
- The internal resistance of the battery and the protection should be as low as possible. It is recommended not to exceed 150mΩ, even in extreme conditions at low temperature. The battery cell must be insensitive to rupture, fire and gassing under extreme conditions of temperature and charging (voltage, current).
- The battery pack must be protected from reverse pole connection. For example, the casing should be designed to prevent the user from mounting the battery in reverse orientation.
- It is recommended that the battery pack be approved to satisfy the requirements of CE conformity.

Figure 8 shows the circuit diagram of a typical battery pack design that includes the protection elements described above.

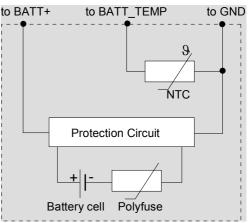


Figure 8: Battery pack circuit diagram

Battery type	Rechargeable Lithium Ion or Lithium Polymer battery
Nominal voltage	3.6V / 3.7V
Capacity	Recommended: 1000mAh to 1200mAh Minimum: 500mAh
NTC	10kΩ ± 5% @ 25°C B value range: B (25/85)=3423K to B =3435K ± 3%
Overcharge detection voltage	4.325 ± 0.025V
Overdischarge detection voltage	2.5 ± 0.05V
Overcurrent detection	3 ± 0.5A
Overcurrent detection delay time	4ms
Short detection delay time	50µs
Internal resistance	<130m Ω Note: A maximum internal resistance of 150m Ω should not be exceeded even after 500 cycles and under extreme conditions.

Table 2: Specifications of battery packs suitable for use with TC65

3.4.2 Batteries Recommended for Use with TC65

When you choose a battery for your TC65 application you can take advantage of one of the following two batteries offered by VARTA Microbattery GmbH. Both batteries meet all requirements listed above. They have been thoroughly tested by Siemens and proved to be equally suited for TC65.

- LIP 633450A1B PCM.STB, type Lithium Ion This battery is listed in the standard product range of VARTA. Incorporated in a shrink sleeve, the battery is CE approved. Therefore it has been chosen for integration into the reference setup submitted for Type Approval of Siemens GSM modules.
- LPP 503759CA PCM.NTC.LT50, type Lithium Polymer This battery has been especially designed by VARTA for use with Siemens GSM modules. It has the same properties as the above Li-Ion battery, except that it is type Polymer, is smaller, comes without casing and is not CE approved.

Specifications, construction drawings and sales contacts for both VARTA batteries can be found in Section 9.3.

3.4.3 Charger Requirements

For using the implemented charging algorithm and the reference charging circuit recommended in [4] and in Figure 38, the charger has to meet the following requirements: Output voltage: 5.2Volts ± 0.2 V (stabilized voltage)

Output voltage: Output current:

500mA Chargers with a higher output current are acceptable, but please consider that only 500mA will be applied when a 0.30hms shunt resistor is connected between VSENSE and ISENSE. See [4] for further details.

3.4.4 Implemented Charging Technique

If the external charging circuit of your application and the charger meet the requirements listed above, charging is enabled in various stages depending on the battery condition:

Trickle charging:

- Trickle charge current flows over the VCHARGE line.
- Trickle charging is done when a charger is present (connected to VCHARGE) and the battery is deeply discharged or has undervoltage. If deeply discharged (Deep Discharge Lockout at V_{BATT+}= 0...2.5V) the battery is charged with 5mA, in case of undervoltage (Undervoltage Lockout at V_{BATT+}= 2.5...3.2V) it is charged with 30mA

Software controlled charging:

- Controlled over the CHARGEGATE.
- Temperature conditions: 0°C to 45°C
- Software controlled charging is done when the charger is present (connected to VCHARGE) and the battery voltage is at least above the undervoltage threshold. Software controlled charging passes the following stages:
 - Power ramp: Depending on the discharge level of the battery (i.e. the measured battery voltage V_{BATT+}) the software adjusts the maximum charge current for charging the battery. The duration of power ramp charging is very short (less than 30 seconds).
 - Fast charging: Battery is charged with constant current (approx. 500mA) until the battery voltage reaches 4.2V (approx. 80% of the battery capacity).
 - Top-up charging: The battery is charged with constant voltage of 4.2V at stepwise reducing charge current until full battery capacity is reached.
- The duration of software controlled charging depends on the battery capacity and the level of discharge.

3.4.5 Operating Modes during Charging

Of course, the battery can be charged regardless of the engine's operating mode. When the GSM module is in Normal mode (SLEEP, IDLE, TALK, GPRS IDLE or GPRS DATA mode), it remains operational while charging is in progress (provided that sufficient voltage is applied). The charging process during the Normal mode is referred to as *Charge mode*.

If the charger is connected to the charger input of the external charging circuit and the module's VCHARGE pin while TC65 is in Power-down mode, TC65 goes into *Charge-only* mode.

	How to activate mode	Description of mode
Charge mode	Connect charger to charger input of host application charging circuit and module's VCHARGE pin while TC65 is • operating, e.g. in IDLE or TALK mode • in SLEEP mode	 Battery can be charged while GSM module remains operational and registered to the GSM network. In IDLE and TALK mode, the serial interfaces are accessible. All AT commands can be used to full extent. NOTE: If the module operates at maximum power level (PCL5) and GPRS Class 12 at the same time the current consumption is higher than the current supplied by the charger.
Charge-only mode	 Connect charger to charger input of host application charging circuit and module's VCHARGE pin while TC65 is in Power-down mode in Normal mode: Connect charger to the VCHARGE pin, then enter AT^SMSO. NOTE: While trickle charging is in progress, be sure that the host application is switched off. If the application is fed from the trickle charge current the module might be prevented from proceeding to software controlled charging since the current would not be sufficient. 	 deregistered from GSM network. Charging runs smoothly due to constant current consumption. The AT interface is accessible and allows to

Table 3: Comparison Charge-only and Charge mode

Table 4: AT commands available in Charge-only mode

AT command	Use
AT+CALA	Set alarm time, configure Airplane mode.
AT+CCLK	Set date and time of RTC.
AT^SBC	Query status of charger connection. Enable / disable "^SBC" URCs.
AT^SCTM	Query temperature range, enable/disable URCs to report critical temperature ranges

3.5 RTC Backup

The internal Real Time Clock of TC65 is supplied from a separate voltage regulator in the analog controller which is also active when TC65 is in POWER DOWN status. An alarm function is provided that allows to wake up TC65 to Airplane mode without logging on to the GSM network.

In addition, you can use the VDDLP pin on the board-to-board connector to backup the RTC from an external capacitor or a battery (rechargeable or non-chargeable). The capacitor is charged by the BATT+ line of TC65. If the voltage supply at BATT+ is disconnected the RTC can be powered by the capacitor. The size of the capacitor determines the duration of buffering when no voltage is applied to TC65, i.e. the larger the capacitor the longer TC65 will save the date and time.

A serial $1k\Omega$ resistor placed on the board next to VDDLP limits the charge current of an empty capacitor or battery.

The following figures show various sample configurations. Please refer to Table 15 for the parameters required.

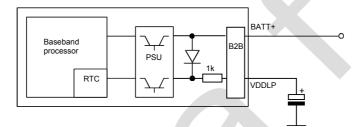


Figure 9: RTC supply from capacitor

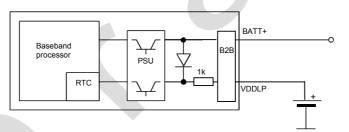


Figure 10: RTC supply from rechargeable battery

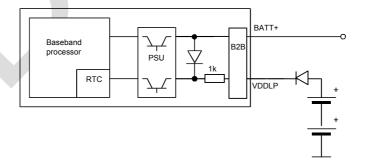


Figure 11: RTC supply from non-chargeable battery

3.6 SIM Interface

The baseband processor has an integrated SIM interface compatible with the ISO 7816 IC Card standard. This is wired to the host interface (board-to-board connector) in order to be connected to an external SIM card holder. Six pins on the board-to-board connector are reserved for the SIM interface.

The SIM interface supports 3V and 1.8V SIM cards. Please refer to Table 15 for electrical specifications of the SIM interface lines depending on whether a 3V or 1.8V SIM card is used.

The CCIN pin serves to detect whether a tray (with SIM card) is present in the card holder. Using the CCIN pin is mandatory for compliance with the GSM 11.11 recommendation if the mechanical design of the host application allows the user to remove the SIM card during operation. To take advantage of this feature, an appropriate SIM card detect switch is required on the card holder. For example, this is true for the model supplied by Molex, which has been tested to operate with TC65 and is part of the Siemens reference equipment submitted for type approval. See Chapter 8 for Molex ordering numbers.

Signal	Description
CCGND	Separate ground connection for SIM card to improve EMC. Be sure to use this ground line for the SIM interface rather than any other ground pin or plane on the module. A design example for grounding the SIM interface is shown in Figure 38.
CCCLK	Chipcard clock, various clock rates can be set in the baseband processor.
CCVCC	SIM supply voltage.
CCIO	Serial data line, input and output.
CCRST	Chipcard reset, provided by baseband processor.
CCIN	Input on the baseband processor for detecting a SIM card tray in the holder. If the SIM is removed during operation the SIM interface is shut down immediately to prevent destruction of the SIM. The CCIN pin is mandatory for applications that allow the user to remove the SIM card during operation. The CCIN pin is solely intended for use with a SIM card. It must not be used for any other purposes. Failure to comply with this requirement may invalidate the type approval of TC65.

Table 5: Signals of the SIM interface (board-to-board connector)

The total cable length between the board-to-board connector pins on TC65 and the pins of the external SIM card holder must not exceed 100mm in order to meet the specifications of 3GPP TS 51.010-1 and to satisfy the requirements of EMC compliance.

To avoid possible cross-talk from the CCCLK signal to the CCIO signal be careful that both lines are not placed closely next to each other. A useful approach is using the CCGND line to shield the CCIO line from the CCCLK line.

Note: No guarantee can be given, nor any liability accepted, if loss of data is encountered after removing the SIM card during operation.

Also, no guarantee can be given for properly initializing any SIM card that the user inserts after having removed a SIM card during operation. In this case, the application must restart TC65.

3.7 Serial Interface ASC0

TC65 offers an 8-wire unbalanced, asynchronous modem interface ASC0 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITU-T V.28. The significant levels are 0V (for low data bit or active state) and 2.9V (for high data bit or inactive state). For electrical characteristics please refer to Table 15.

TC65 is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:

- Port TXD @ application sends data to the module's TXD0 signal line
- Port RXD @ application receives data from the module's RXD0 signal line

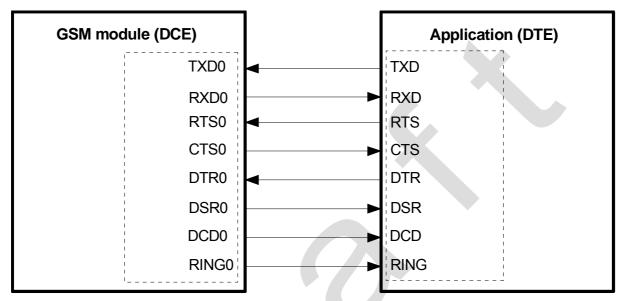


Figure 12: Serial interface ASC0

Features

- Includes the data lines TXD0 and RXD0, the status lines RTS0 and CTS0 and, in addition, the modem control lines DTR0, DSR0, DCD0 and RING0.
- ASC0 is primarily designed for controlling voice calls, transferring CSD, fax and GPRS data and for controlling the GSM engine with AT commands.
- Full Multiplex capability allows the interface to be partitioned into three virtual channels, yet with CSD and fax services only available on the first logical channel. Please note that when the ASC0 interface runs in Multiplex mode, ASC1 cannot be used. For more details on Multiplex mode see [5].
- The DTR0 signal will only be polled once per second from the internal firmware of TC65.
- The RING0 signal serves to indicate incoming calls and other types of URCs (Unsolicited Result Code). It can also be used to send pulses to the host application, for example to wake up the application from power saving state. See [1] for details on how to configure the RING0 line by AT^SCFG.
- By default, configured for 8 data bits, no parity and 1 stop bit. The setting can be changed using the AT command AT+ICF and, if required, AT^STPB. For details see [1].
- ASC0 can be operated at bit rates from 300bps to 460800bps.
- Autobauding supports the following bit rates: TBD.
- Autobauding is not compatible with multiplex mode.
- Supports RTS0/CTS0 hardware flow control and XON/XOFF software flow control.

Table 6: DCE-DTE wiring of ASC0

V.24	DCE			DTE		
circuit	Pin function	Signal direction	Pin function	Signal direction		
103	TXD0	Input	TXD	Output		
104	RXD0	Output	RXD	Input		
105	RTS0	Input	RTS	Output		
106	CTS0	Output	CTS	Input		
108/2	DTR0	Input	DTR	Output		
107	DSR0	Output	DSR	Input		
109	DCD0	Output	DCD	Input		
125	RING0	Output	/RING	Input		

3.8 Serial Interface ASC1

TC65 offers a 4-wire unbalanced, asynchronous modem interface ASC1 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITU-T V.28. The significant levels are 0V (for low data bit or active state) and 2.9V (for high data bit or inactive state). For electrical characteristics please refer to Table 15.

TC65 is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals:

- Port TXD @ application sends data to module's TXD1 signal line
- Port RXD @ application receives data from the module's RXD1 signal line

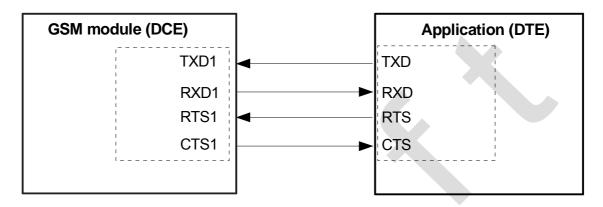


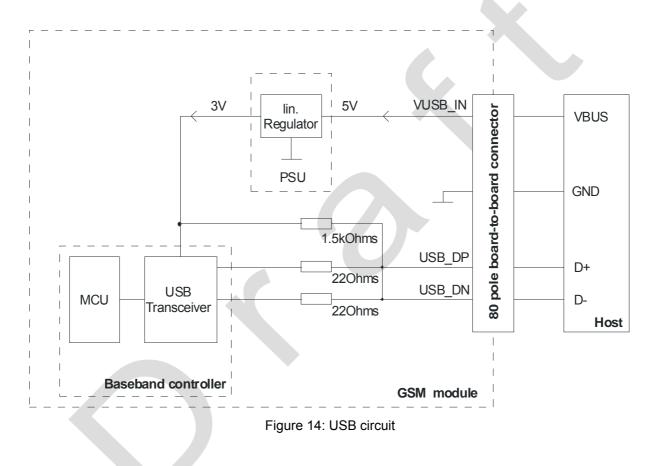
Figure 13: Serial interface ASC1

Features

- Includes only the data lines TXD1 and RXD1 plus RTS1 and CTS1 for hardware handshake.
- On ASC1 no RING line is available. The indication of URCs on the second interface depends on the settings made with the AT^SCFG command. For details refer to [1].
- Configured for 8 data bits, no parity and 1 or 2 stop bits.
- ASC1 can be operated at bit rates from 300bps to 460800bps.
- Autobauding TBD.
- Supports RTS1/CTS1 hardware flow control and XON/XOFF software flow control.

V.24		DCE		DTE
circuit	Pin function	Signal direction	Pin function	Signal direction
103	TXD1	Input	TXD	Output
104	RXD1	Output	RXD	Input
105	RTS1	Input	RTS	Output
106	CTS1	Output	CTS	Input

Table 7: DCE-DTE wiring of ASC1


3.9 USB Interface

TC65 supports a USB 2.0 Full Speed (12Mbit/s) device interface. It is primarily intended for use as command and data interface and for downloading firmware.

The USB I/O-pins are capable of driving the signal at min 3.0V. They are 5V I/O compliant.

To properly connect the module's USB interface to the host a USB 2.0 compatible connector is required. Furthermore, the USB modem driver delivered with TC65 must be installed as described below.

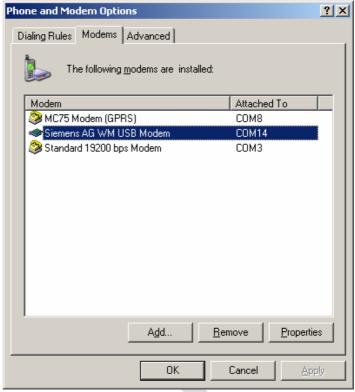
The USB host is responsible for supplying, across the VUSB_IN line, power to the module's USB interface, but not to other TC65 interfaces. This is because TC65 is designed as a self-powered device compliant with the "Universal Serial Bus Specification Revision 2.0"¹.

¹ The specification is ready for download on <u>http://www.usb.org/developers/docs/</u>

3.9.1 Installing the USB Modem Driver

This section assumes you are familiar with installing and configuring a modem under Windows 2000 and Windows XP. As both operating systems use multiple methods to access modem settings this section provides only a brief summary of the most important steps.

Take care that the "usbmodem.inf" file delivered with TC65 is at hand. Connect the USB cable to the TC65 host application (for example the evaluation board DSB75) and the PC. Windows detects TC65 as a new USB modem, opens the *Found New Hardware Wizard* and reports that it is searching for the "Siemens AG WM USB Modem" driver. Follow the instructions on the screen and specify the path where the "usbmodem.inf" file is located. Windows will copy the required software to your computer and configure the modem by assigning a free COM port. If you are already using more than one COM port then the next free one will be allocated. Click *Finish* to complete the installation.


Notes for Windows 2000 only:

 During the installation procedure you will be prompted for the "usbser.sys" driver. Make sure the file is present before you start installing the above inf file.
 The "usbser.sys" file is not delivered as a single file, but must be extracted from a Windows 2000 cabinet file. This is either the file "driver cab" located in the "I386" folder of

Windows 2000 cabinet file. This is either the file "driver.cab" located in the "I386" folder of the original Windows 2000 CD or a later cabinet file inside the Service Pack. SP4 for example includes the "sp4.cab" file which can be found in its "I386" folder. The "usbser.sys" driver from the Service Pack has priority over one provided with the standard Windows 2000 install CD.

• It is necessary to restart Windows 2000 to make the changes take effect.

Found New Hardware Wizard				
	Welcome to the Hardware Wiza			
	This wizard helps you ins	tall software for:		
LOGY	Siemens AG WM USF	Found New Hardware Wizard		
	If your hardwa or floppy disk,			npleting the Found New dware Wizard
			The w	izard has finished installing the software for:
	What do you want the w		1	Siemens AG WM USB Modem
	 Install the softwar Install from a list o 		Ŀ	•
	se anstal nom a list o			
	Click Next to continue.			
	< <u>B</u>			
			Click F	inish to close the wizard.
				< <u>B</u> ack Finish Cancel

SIEMENS

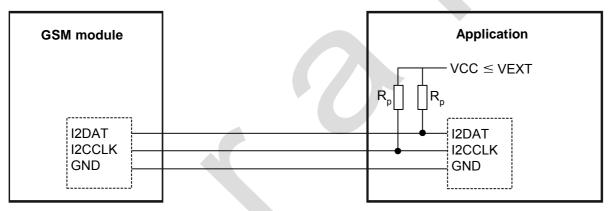
Troubleshooting for installation problems

If Windows fails to assign the next free COM port to TC65 and, for example, allocates a COM port already used by another modem you can manually select a free port as follows:

the Windows Open Device Manager, select the installed "Siemens AG WM USB Modem", click Properties, select the Advanced tab and click Advanced Port From the settings. Port listbox COM Number choose a free port. To make the changes take effect disconnect and reconnect the USB cable. If not yet successful, also restart Windows.

Advanced Settings for COM14				? ×
✓ Use FIFO buffers (requires 16 Select lower settings to correct Select higher settings for faste Beceive Buffer: Low (1)	t connection problems.	 High (14) High (16)	(14)	OK Cancel Defaults
COM <u>P</u> ort Number: COM14 COM1 (in use) COM2 (in use) COM3 (in use)	• •			
COM4 (in use) COM5 (in use) COM6 (in use) COM7 (in use) COM8 (in use) COM10 (in use) COM10 (in use COM11 (in use COM12 (in use COM13 (in use COM14 COM15 COM16 COM16 COM17 COM18 COM19 COM20 COM21)			
COM21 COM22 COM23 COM24 COM25 COM25 COM26 COM27 COM28 COM29 COM29 COM30	-			

3.10 I²C Interface


I²C is a serial, 8-bit oriented data transfer bus for bit rates up to 400kbps in Fast mode. It consists of two lines, the serial data line I2CDAT and the serial clock line I2CCLK.

The TC65 module acts as a single master device, e.g. the clock I2CCLK is driven by module. I2CDAT is a bi-directional line.

Each device connected to the bus is software addressable by a unique address, and simple master/slave relationships exist at all times. The module operates as master-transmitter or as master-receiver. The customer application transmits or receives data only on request of the module. To configure and activate the I²C interface use the AT^SSPI command described in [1].

The I²C interface can be powered from an external supply or via the VEXT line of TC65. If connected to the VEXT line the I²C interface will be properly shut down when the module enters the Power-down mode. If you prefer to connect the I²C interface to an external power supply, take care that VCC of the application is in the range of V_{VEXT} and that the interface is shut down when the PWR_IND signal goes high. See figures below as well as Section 7 and Figure 38.

In the application I2CDAT and I2CCLK lines need to be connected to a positive supply voltage via a pull-up resistor.

For electrical characteristics please refer to Table 15.

Figure 15: I²C interface connected to VCC of application

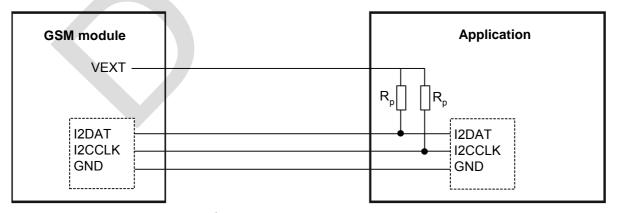


Figure 16: I²C interface connected to VEXT line of TC65

Note: Good care should be taken when creating the PCB layout of the host application: The traces of I2CCLK and I2CDAT should be equal in length and as short as possible.

3.11 Audio Interfaces

TC65 comprises three audio interfaces available on the board-to-board connector:

- Two analog audio interfaces, both with balanced or single-ended inputs/outputs.
- Serial digital audio interface (DAI) designed for PCM (Pulse Code Modulation).

This means you can connect up to three different audio devices, although only one interface can be operated at a time. Using the AT^SAIC command you can easily switch back and forth.

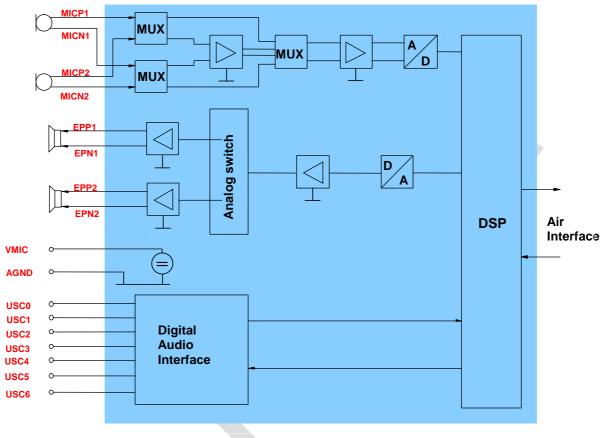


Figure 17: Audio block diagram

To suit different types of accessories the audio interfaces can be configured for different audio modes via the AT^SNFS command. The electrical characteristics of the voiceband part vary with the audio mode. For example, sending and receiving amplification, sidetone paths, noise suppression etc. depend on the selected mode and can be altered with AT commands (except for mode 1).

Both analog audio interfaces can be used to connect headsets with microphones or speakerphones. Headsets can be operated in audio mode 3, speakerphones in audio mode 2. Audio mode 5 can be used for a speech coder without signal pre or post processing.

When shipped from factory, all audio parameters of TC65 are set to interface 1 and audio mode 1. This is the default configuration optimized for the Votronic HH-SI-30.3/V1.1/0 handset and used for type approving the Siemens reference configuration. Audio mode 1 has fix parameters which cannot be modified. To adjust the settings of the Votronic handset simply change to another audio mode.

3.11.1 Speech Processing

The speech samples from the ADC or DAI are handled by the DSP of the baseband controller to calculate e.g. amplifications, sidetone, echo cancellation or noise suppression depending on the configuration of the active audio mode. These processed samples are passed to the speech encoder. Received samples from the speech decoder are passed to the DAC or DAI after post processing (frequency response correction, adding sidetone etc.).

Full rate, half rate, enhanced full rate, adaptive multi rate (AMR), speech and channel encoding including voice activity detection (VAD) and discontinuous transmission (DTX) and digital GMSK modulation are also performed on the GSM baseband processor.

3.11.2 Microphone Circuit

TC65 has two identical analog microphone inputs. There is no on-board microphone supply circuit, except for the internal voltage supply VMIC and the dedicated audio ground line AGND. Both lines are well suited to feed a balanced audio application or a single-ended audio application.

The AGND line on the TC65 board is especially provided to achieve best grounding conditions for your audio application. As there is less current flowing than through other GND lines of the module or the application, this solution will avoid hum and buzz problems.

3.11.2.1 Single-ended Microphone Input

Figure 18 as well as Figure 38 show an example of how to integrate a single-ended microphone input.

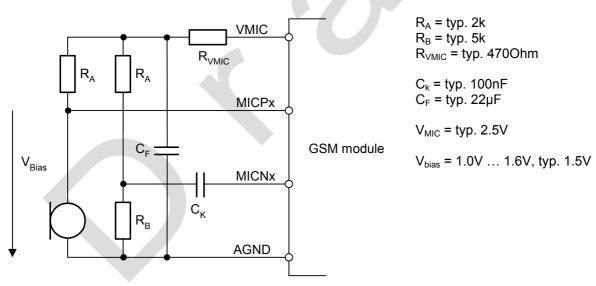


Figure 18: Single ended microphone input

 R_A has to be chosen so that the DC voltage across the microphone falls into the bias voltage range of 1.0V to 1.6V and the microphone feeding current meets its specification.

The MICNx input is automatically self biased to the MICPx DC level. It is AC coupled via C_K to a resistive divider which is used to optimize supply noise cancellation by the differential microphone amplifier in the module.

The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (R_{VMIC} and C_F).

This circuit is well suited if the distance between microphone and module is kept short. Due to good grounding the microphone can be easily ESD protected as its housing usually connects to the negative terminal.

3.11.2.2 Differential Microphone Input

Figure 19 shows a differential solution for connecting an electret microphone.

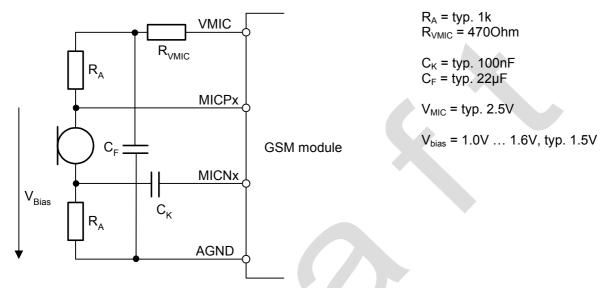


Figure 19: Differential microphone input

The resulting DC voltage between MICPx and AGND should be in the range of 1.0V to 1.6V to bias the input amplifier. MICNx is automatically self biased to the MICPx DC level. The resulting AC differential voltage is then amplified in the GSM module.

The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (R_{VMIC} and C_F).

The advantage of this circuit is that it can be used if the application involves longer lines between microphone and module.

3.11.2.3 Line Input Configuration with OpAmp

Figure 20 shows an example of how to connect an opamp into the microphone circuit.

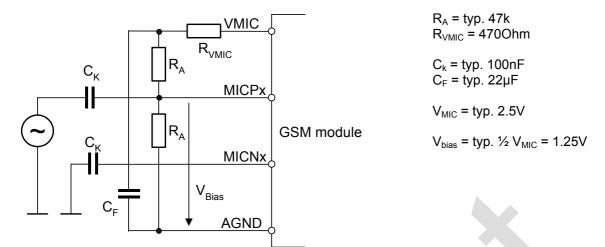
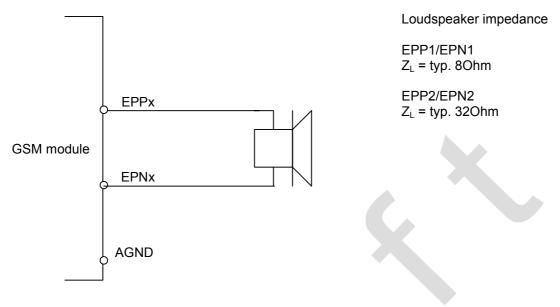
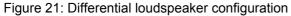


Figure 20: Line input configuration with OpAmp


The AC source (e.g. an opamp) and its reference potential have to be AC coupled to the MICPx resp. MICNx input terminals. The voltage divider between VMIC and AGND is necessary to bias the input amplifier. MICNx is automatically self biased to the MICPx DC level.


The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (R_{VMIC} and C_F). If a high input level and a lower gain are applied the filter is not necessary.

If desired, MICNx via C_{κ} can also be connected to the inverse output of the AC source instead of connecting it to the reference potential for differential line input.

3.11.3 Loudspeaker Circuit

The GSM module comprises two analog speaker outputs: EP1 and EP2. Output EP1 is able to drive a load of 80hms while the output EP2 can drive a load of 320hms. Each interface can be connected in differential and in single ended configuration. See examples in Figure 21 and Figure 22.

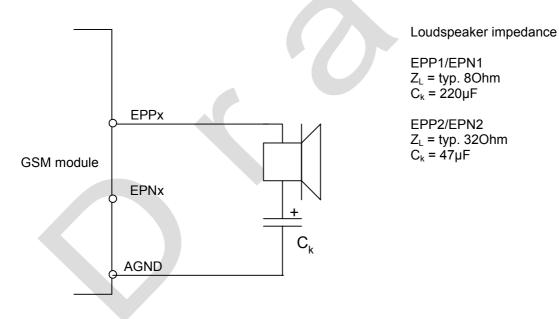


Figure 22: Single ended loudspeaker configuration

3.11.4 Digital Audio Interface DAI

TBD

3.12 Control Signals

3.12.1 Synchronization Signal

The synchronization signal serves to indicate growing power consumption during the transmit burst. The signal is generated by the SYNC pin (pin number 32). Please note that this pin can adopt three different operating modes which you can select by using the AT^SSYNC command: the mode AT^SSYNC=0 described below, and the two LED modes AT^SSYNC=1 or AT^SSYNC=2 described in [1] and Section 3.12.2.

The first function (factory default AT^SSYNC=0) is recommended if you want your application to use the synchronization signal for better power supply control. Your platform design must be such that the incoming signal accommodates sufficient power supply to the TC65 module if required. This can be achieved by lowering the current drawn from other components installed in your application.

The timing of the synchronization signal is shown below. High level of the SYNC pin indicates increased power consumption during transmission.

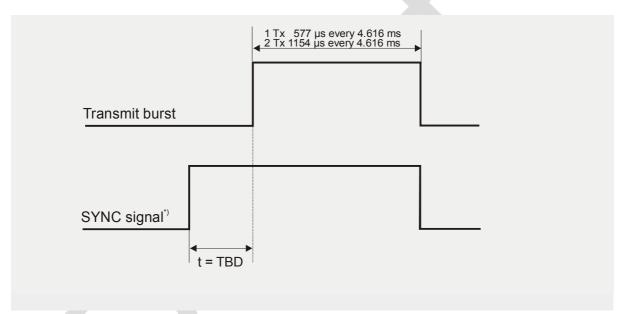


Figure 25: SYNC signal during transmit burst

^{*)} The duration of the SYNC signal is always equal, no matter whether the traffic or the access burst are active.

3.12.2 Using the SYNC Pin to Control a Status LED

As an alternative to generating the synchronization signal, the SYNC pin can be configured to drive a status LED that indicates different operating modes of the TC65 module. To take advantage of this function the LED mode must be activated with the AT^SSYNC command and the LED must be connected to the host application. The connected LED can be operated in two different display modes (AT^SSYNC=1 or AT^SSYNC=2). For details please refer to [1].

Especially in the development and test phase of an application, system integrators are advised to use the LED mode of the SYNC pin in order to evaluate their product design and identify the source of errors.

To operate the LED a buffer, e.g. a transistor or gate, must be included in your application. A sample cicuit is shown in Figure 26. Power consumption in the LED mode is the same as for the synchronization signal mode. For details see Table 15, SYNC pin.

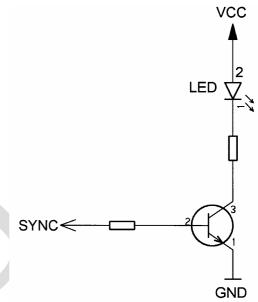


Figure 26: LED Circuit (Example)

4 Antenna Interface

The RF interface has an impedance of 50Ω . TC65 is capable of sustaining a total mismatch at the antenna connector or pad without any damage, even when transmitting at maximum RF power.

The external antenna must be matched properly to achieve best performance regarding radiated power, DC-power consumption, modulation accuracy and harmonic suppression. Antenna matching networks are not included on the TC65 PCB and should be placed in the host application.

Regarding the return loss TC65 provides the following values in the active band:

Table 9: Return loss in the active band

State of module	Return loss of module	Recommended return loss of application
Receive	<u>≥</u> 8dB	<u>≥</u> 12dB
Transmit	not applicable	≥ 12dB

The connection of the antenna or other equipment must be decoupled from DC voltage. This is necessary because the antenna connector is DC coupled to ground via an inductor for ESD protection.

4.1 Antenna Installation

To suit the physical design of individual applications TC65 offers two alternative approaches to connecting the antenna:

- Recommended approach: U.FL-R-SMT antenna connector from Hirose assembled on the component side of the PCB (top view on TC65). See Section 4.3 for details.
- Antenna pad and grounding plane placed on the bottom side. See Section 4.2.

The U.FL-R-SMT connector has been chosen as antenna reference point (ARP) for the Siemens reference equipment submitted to type approve TC65. All RF data specified throughout this manual are related to the ARP. For compliance with the test results of the Siemens type approval you are advised to give priority to the connector, rather than using the antenna pad.

IMPORTANT: Both solutions can only be applied alternatively. This means, whenever an antenna is plugged to the Hirose connector, the pad must not be used. Vice versa, if the antenna is connected to the pad, then the Hirose connector must be left empty.

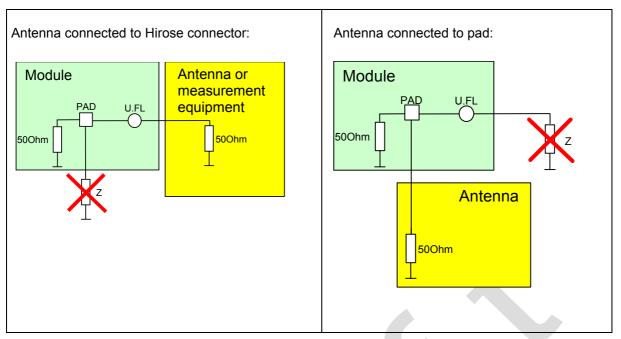


Figure 27: Never use antenna connector and antenna pad at the same time

No matter which option you choose, ensure that the antenna pad does not come into contact with the holding device or any other components of the host application. It needs to be surrounded by a restricted area filled with air, which must also be reserved 0.8mm in height.

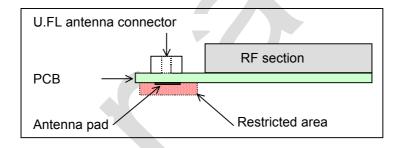


Figure 28: Restricted area around antenna pad

4.2 Antenna Pad

The antenna can be soldered to the pad, or attached via contact springs. For proper grounding connect the antenna to the ground plane on the bottom of TC65 which must be connected to the ground plane of the application.

When you decide to use the antenna pad take into account that the pad has not been intended as antenna reference point (ARP) for the Siemens TC65 type approval. The antenna pad is provided only as an alternative option which can be used, for example, if the recommended Hirose connection does not fit into your antenna design.

Also, consider that according to the GSM recommendations TS 45.005 and TS 51.010-01 a 50Ω connector is mandatory for type approval measurements. This requires GSM devices with an integral antenna to be temporarily equipped with a suitable connector or a low loss RF cable with adapter.

Notes on soldering:

- To prevent damage to the module and to obtain long-term solder joint properties you are advised to maintain the standards of good engineering practice for soldering.
- Be sure to solder the antenna core to the pad and the shielding of the coax cable to the ground plane of the module next to the antenna pad. The direction of the cable is not relevant from the electrical point of view.

TC65 material properties:

TC65 PCB: FR4 Antenna pad: Gold plated pad

4.2.1 Suitable Cable Types

For direct solder attachment, we suggest to use the following cable types:

- RG316/U 50Ohm coaxial cable
- 1671A 500hm coaxial cable

Suitable cables are offered, for example, by IMS Connector Systems. For further details and other cable types please contact <u>http://www.imscs.com</u>.

4.3 Antenna Connector

TC65 uses an ultra-miniature SMT antenna connector supplied from Hirose Ltd. The product name is: U.FL-R-SMT

The position of the antenna connector on the TC65 board can be seen in Figure 35.

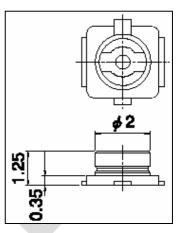


Figure 29: Mechanical dimensions of U.FL-R-SMT connector

Table 10: Product specifications of U.FL-R-SMT connector

Item	Specification	Conditions
Ratings		
Nominal impedance	50Ω	Operating temp:-40°C to + 90°C
Rated frequency	DC to 3GHz	Operating humidity: max. 90%
Mechanical characteristics		
Female contact holding force	0.15N min	Measured with a \varnothing 0.475 pin gauge
Repetitive operation	Contact resistance: Center $25m\Omega$ Outside $15m\Omega$	30 cycles of insertion and disengagement
Vibration	No momentary disconnections of 1µs; No damage, cracks and looseness of parts	Frequency of 10 to 100Hz, single amplitude of 1.5mm, acceleration of 59m/s ² , for 5 cycles in the direction of each of the 3 axes
Shock	No momentary disconnections of 1µs. No damage, cracks and looseness of parts.	Acceleration of 735m/s ² , 11ms duration for 6 cycles in the direction of each of the 3 axes
Environmental characteristics		
Humidity resistance	No damage, cracks and looseness of parts. Insulation resistance: $100M\Omega$ min. at high humidity $500M\Omega$ min. when dry	Exposure to 40°C, humidity of 95% for a total of 96 hours
Temperature cycle	No damage, cracks and looseness of parts. Contact resistance: Center $25m\Omega$ Outside $15m\Omega$	Temperature: $+40^{\circ}C \rightarrow 5 \text{ to } 35^{\circ}C$ $\rightarrow +90^{\circ}C \rightarrow 5 \text{ to } 35^{\circ}C$ Time: $30\text{min} \rightarrow \text{within } 5\text{min} \rightarrow$ 30min within 5min
Salt spray test	No excessive corrosion	48 hours continuous exposure to 5% salt water

Part	Material		Finish
Shell	Phosphor bronze		Silver plating
Male center contact	Brass		Gold plating
Female center contact	Phosphor bronze		Gold plating
Insulator	Plug: Receptacle:	PBT LCP	Black Beige

Table 11: Material and finish of U.FL-R-SMT co	connector and recommended plugs
--	---------------------------------

Mating plugs and cables can be chosen from the Hirose U.FL Series. Examples are shown below and listed in Table 12. For latest product information please contact your Hirose dealer or visit the Hirose home page, for example <u>http://www.hirose.com</u>.

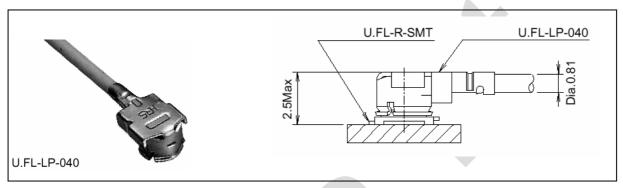


Figure 30: U.FL-R-SMT connector with U.FL-LP-040 plug

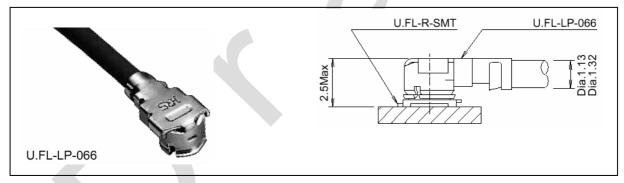
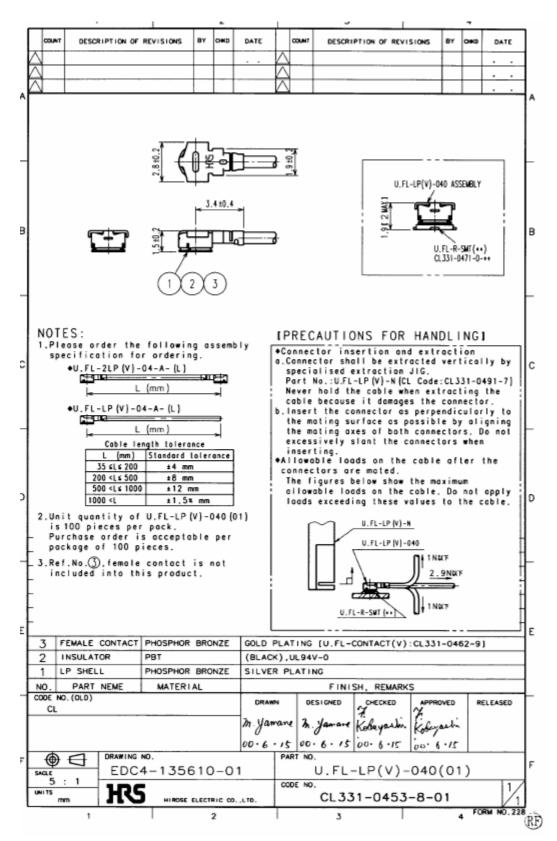




Figure 31: U.FL-R-SMT connector with U.FL-LP-066 plug

In addition to the connectors illustrated above, the U.FL-LP-(V)-040(01) version is offered as an extremely space saving solution. This plug is intended for use with extra fine cable (up to \emptyset 0.81mm) and minimizes the mating height to 2mm. See Figure 32 which shows the Hirose datasheet.

Item	Part number	HRS number
Connector on TC65	U.FL-R-SMT	CL331-0471-0-10
Right-angle plug shell for \varnothing 0.81mm cable	U.FL-LP-040	CL331-0451-2
Right-angle plug for \varnothing 0.81mm cable	U.FL-LP(V)-040 (01)	CL331-053-8-01
Right-angle plug for \varnothing 1.13mm cable	U.FL-LP-068	CL331-0452-5
Right-angle plug for \varnothing 1.32mm cable	U.FL-LP-066	CL331-0452-5
Extraction jig	E.FL-LP-N	CL331-04441-9

Table 12: Ordering information for Hirose U.FL Series

5 Electrical, Reliability and Radio Characteristics

5.1 Absolute Maximum Ratings

The absolute maximum ratings stated in Table 13 are stress ratings under non-operating conditions. Stresses beyond any of these limits will cause permanent damage to TC65.

Table 13: Absolute maximum ratings under non-operating conditions

Parameter	Min	Max	Unit
Supply voltage BATT+	-0.3	5.5	V
Voltage at digital pins	-0.3	3.05	V
Voltage at analog pins	-0.3	3.0	V
Voltage at VCHARGE pin	-0.3	5.5	V
Voltage at CHARGEGATE pin	-0.3	5.5	V
VUSB_IN	-0.3	5.5	V
VSENSE		5.5	V
ISENSE		5.5	V

5.2 Operating Temperatures

Test conditions were specified in accordance with IEC 60068-2 (still air). The values stated below are in compliance with GSM recommendation TS 51.010-01.

Table 14: Operating temperature

Parameter	Min	Тур	Max	Unit
Ambient temperature (according to GSM 11.10)	-30	+25	+65	°C
Automatic shutdown TC65 board temperature Battery temperature	-30 -20		+90 +60	°C
Ambient temperature for charging (software controlled fast charging)	0		+45	°C

5.3 Pin Assignment and Signal Description

The Molex board-to-board connector on TC65 is an 80-pin double-row receptacle. The names and the positions of the pins can be seen from Figure 1 which shows the top view of TC65.

1	GND	GND	80	
2	ADC1_IN	DAC_OUT	79	
3	ADC2_IN	PWR_IND	78	
4	GND	Do not use	77	
5	GPIO10	GPIO9	76	
6	GPIO8	SPICS	75	
7	SPIDI	GPIO4	74	
8	GPIO7	GPIO3	73	
9	GPIO6	GPIO2	72	
10	GPIO5	GPIO1	71	
11	I2CCLK_SPICLK	I2CDAT_SPIDO	70	
12	VUSB_IN	USB_DP	69	
13	DAI5	USB_DN	68	
14	ISENSE	VSENSE	67	
15	DAI6	VMIC	66	
16	CCCLK	EPN2	65	
17	CCVCC	EPP2	64	
18	CCIO	EPP1	63	
19	CCRST	EPN1	62	
20	CCIN	MICN2	61	
21	CCGND	MICP2	60	
22	DAI4	MICP1	59	
23	DAI3	MICN1	58	
24	DAI2	AGND	57	
25	DAI1	IGT	56	
26	DAI0	EMERG_RST	55	
27	BATT_TEMP	DCD0	54	
28	SYNC	CTS1	53	
29	RXD1	CTS0	52	
30	RXD0	RTS1	51	
31	TXD1	DTR0	50	
32	TXD0	RTS0	49	
33	VDDLP	DSR0	48	
34	VCHARGE	RING0	47	
35	CHARGEGATE	VEXT	46	1
36	GND	BATT+	45	1
37	GND	BATT+	44	
38	GND	BATT+	43	1
39	GND	BATT+	42	
40	GND	BATT+	41	

Figure 33: Pin assignment (component side of TC65)

Please note that the reference voltages listed in Table 15 are the values measured directly on the TC65 module. They do not apply to the accessories connected.

Table 15: Signal description

Function	Signal name	ю	Signal form and level	Comment
Power supply	BATT+	Ι	$V_Imax = 4.5V$ $V_Ityp = 3.8V$ $V_Imin = 3.2V$ during Tx burst on board I ≈ 2A, during Tx burst n Tx = n x 577µs peak current every 4.616ms	Five pins of BATT+ and GND must be connected in parallel for supply purposes because higher peak currents may occur. Minimum voltage must not fall below 3.2V including drop, ripple, spikes.
Power supply	GND		Ground	Application Ground
Charge Interface	VCHARGE	Ι	V _I min = 1.015 * V _{BATT+} V _I max = 5.45V	This line signalizes to the processor that the charger is connected. If unused keep pin open.
	BATT_TEMP	I	Connect NTC with R _{NTC} ≈ 10kΩ @ 25°C to ground. See Section 3.4.1 for B value of NTC.	Battery temperature measurement via NTC resistance. NTC should be installed inside or near battery pack to enable proper charging and deliver temperature values. If unused keep pin open.
	ISENSE	Ι	V_1 max = 4.65V ΔV_1 max to V_{BATT+} = +0.3V at normal condition	ISENSE is required for measuring the charge current. For this purpose, a shunt resistor for current measurement needs to be connected between ISENSE and VSENSE. If unused connect pin to VSENSE.
	VSENSE	I	V _I max = 4.5V	VSENSE must be directly connected to BATT+ at battery connector or external power supply.
	CHARGEGATE	0	V _o max = 5.5V I _o max = 1mA	Control line to the gate of charge FET If unused keep pin open.
External supply voltage	VEXT	0	Normal mode: $V_{o}min = 2.75V$ $V_{o}typ = 2.93V$ $V_{o}max = 3.05V$ $I_{o}max = -50mA$	VEXT may be used for application circuits, for example to supply power for an I2C If unused keep pin open. Not available in Power-down mode. The external digital logic must not cause any spikes or glitches on voltage VEXT.

Function	Signal name	ю	Signal form and level	Comment
Power indicator	PWR_IND	0	V _{IH} max = 10V	PWR_IND (Power Indicator) notifies the module's on/off
indicator			V _{OL} max = 0.4V at Imax = 2mA	state.
				PWR_IND is an open collector that needs to be connected to an external pull- up resistor. Low state of the open collector indicates that the module is on. Vice versa, high level notifies the Power- down mode.
				Therefore, the pin may be used to enable external voltage regulators which supply an external logic for communication with the module, e.g. level converters.
Ignition	IGT	Ι	R _I ≈ 30kΩ, C _I ≈ 10nF V _{II} max = 0.8V at Imax = -150μA	This signal switches the mobile on.
			V_{OH} max = 4.5V (V_{BATT+}) ON $ $ Active Low \ge 300ms	This line must be driven low by an open drain or open collector driver.
Emergency reset	EMERG_RST	I	$R_I ≈ 5kΩ$ $V_{IL}max = 0.2V$ at Imax = -0.5mA $V_{OH}min = 1.75V$ $V_{OH}max = 3.05V$	Reset function in case of emergency: Pull down and release EMERG_RST. Falling edge will reset the module.
			Signal [Pull down ≥ 10ms Falling edge resets module.	Data stored in the volatile memory will be lost. For orderly software controlled reset rather use the AT+CFUN command (e.g. AT+CFUN=,1).
				This line must be driven by open drain or open collector.
				If unused keep pin open.
Synchroni- zation	SYNC	0	$V_{OL}max = 0.3V \text{ at I} = 0.1mA$ $V_{OH}min = 2.3V \text{ at I} = -0.1mA$	There are two alternative options for using the SYNC pin:
			V _{OH} max = 0.05V n Tx = n x 577µs impulse each 4.616ms, withµs forward time.	a) Indicating increased current consumption during uplink transmission burst. Note that the timing of the signal is different during handover.
				 b) Driving a status LED to indicate different operating modes of TC65. The LED must be installed in the host application. If unused keep pin open.
RTC backup	VDDLP	I/O	$R_{I} \approx 1k\Omega$	If unused keep pin open.
			$V_0max = 4.5V$ $V_{BATT+} = 4.3V$: $V_0 = 3.2V$ at $I_0 = -500\mu A$	
			V _{BATT+} = 0V: V _I = 2.7V…4.5V at I _{max} = 15µA	

Function	Signal name	10	Signal form and level	Comment
SIM interface specified for use with 3V SIM card	CCIN	Ι	$R_I ≈ 100 k\Omega$ $V_{IL}max = 0.6V at I = -25µA$ $V_{IH}min = 2.1V at I = -10µA$ $V_Omax = 3.05V$	CCIN = Low, SIM card holder closed
	CCRST	0	R _O ≈ 47Ω V _{OL} max = 0.25V at I = +1mA V _{OH} min = 2.5V at I = -0.5mA V _{OH} max = 2.95V	Maximum cable length or copper track 100mm to SIM card holder.
	CCIO I/O R _I $\approx 4.7k\Omega$ V _{IL} max = 0.75V V _{IL} min = -0.3V V _{IH} min = 2.1V V _{IH} max = CCVCCmin + 0.3V = 3.05V R ₀ $\approx 100\Omega$ V _{0L} max = 0.3V at I = +1mA		$V_{IL}max = 0.75V$ $V_{IL}min = -0.3V$ $V_{IH}min = 2.1V$ $V_{IH}max = CCVCCmin + 0.3V = 3.05V$ $R_0 \approx 100\Omega$	All signals of SIM interface are protected against ESD with a special diode array. Usage of CCGND is mandatory.
	CCCLK	0	$V_{OH}max = 2.95V$ $R_{O} \approx 100\Omega$ $V_{OL}max = 0.3V \text{ at I} = +1mA$ $V_{OH}min = 2.5V \text{ at I} = -0.5mA$ $V_{OH}max = 2.95V$	
	CCVCC	0	$V_{o}min = 2.75V$ $V_{o}typ = 2.85V$ $V_{o}max = 2.95V$ $I_{o}max = -20mA$	
	CCGND		Ground	
SIM interface specified for use with 1.8V SIM	CCIN	I	R _I ≈ 100kΩ V _{IL} max = 0.6V at I = -25μA V _{IH} min = 2.1V at I = -10μA V _O max = 3.05V	CCIN = Low, SIM card holder closed Maximum cable length or
card	CCRST	0	R _O ≈ 47Ω V _{oL} max = 0.25V at I = +1mA V _{OH} min = 1.45V at I = -0.5mA V _{OH} max = 1.90V	copper track 100mm to SIM card holder.
	CCIO	I/O	$R_{I} \approx 4.7 k\Omega$ $V_{IL}max = 0.45V$ $V_{IH}min = 1.35V$ $V_{IH}max = CCVCCmin + 0.3V = 2.00V$ $R_{0} \approx 100\Omega$	All signals of SIM interface are protected against ESD with a special diode array. Usage of CCGND is
			V _{OL} max = 0.3V at I = +1mA V _{OH} min = 1.45V at I = -0.5mA V _{OH} max = 1.90V	mandatory.
	CCCLK	0	R _O ≈ 100Ω V _{OL} max = 0.3V at I = +1mA V _{OH} min = 1.45V at I = -0.5mA V _{OH} max = 1.90V	
	CCVCC	0	V_{o} min = 1.70V, V_{o} typ = 1.80V V_{o} max = 1.90V I_{o} max = -20mA	
	CCGND		Ground	
ASC0	RXD0	0	V_{OL} max = 0.2V at I = 2mA	Serial interface for AT
Serial	TXD0	Ι	V _{OH} min = 2.55V at I = -0.5mA V _{OH} max = 3.05V	commands or data stream.
interface	CTS0	0	VOHINAX - 3.03V	
	RTS0	Ι	V _{II} max = 0.8V	If lines are unused keep pins
	DTR0	Ι	V_{IH} min = 2.0V	open.
	DCD0	0	V _{IH} max = VEXTmin + 0.3V = 3.05V	
	DSR0	0		
	RING0	0		

Function	Signal name	10	Signal form and level	Comment
ASC1	RXD1	0	V _{OL} max = 0.2V at I = 2mA	Serial interface for AT
Serial	TXD1	Ι	V_{OH} min = 2.55V at I = -0.5mA	commands or data stream.
interface	CTS1	0	V_{OH} max = 3.05V	
	RTS1	I	V_{IL} max = 0.8V V_{IH} min = 2.0V	If lines are unused keep pins open.
			V _{IH} max = VEXTmin + 0.3V = 3.05V	
I ² C interface	I2CCLK	0	V _{OL} max = 0.2V at I = 2mA V _{OH} min = 2.55V at I = -0.5mA V _{OH} max = 3.05V	I ² C interface is only available if the two pins are not used as SPI interface.
	I2CDAT	I/O	$V_{OL}max = 0.2V$ at I = 2mA $V_{IL}max = 0.8V$ $V_{IH}min = 2.0V$ $V_{IH}max = VEXTmin + 0.3V = 3.05V$	I2CDAT is configured as Open Drain and needs a pull- up resistor in the host application. According to the I2C Bus Specification Version 2.1 for the fast mode a rise time of max. 300ns is permitted. There is also a maximum V_{OL} =0.4V at 3mA specified. The value of the pull-up
				depends on the capacitive load of the whole system (I2C Slave + lines). The maximum sink current of I2CDAT and I2CCLK is 4mA. If lines are unused keep pins
			$\lambda = 0.0 \lambda = 0.0 \lambda$	open.
SPI Serial	MISO (GPIO8) MOSI (I2CDAT)	 0	V _{OL} max = 0.2V at I = 2mA V _{OH} min = 2.55V at I = -0.5mA	If the Serial Peripheral Interface is active I ² C
Peripheral	SCK (I2CCLK)	0	V_{OH} max = 3.05V	interface is not available.
Interface	SEL (GPIO7)	0		
	SEL (GFIOT)	0	$V_{IL}max = 0.8V$ $V_{IH}min = 2.0V$, $V_{IH}max = VEXTmin + 0.3V = 3.05V$	If lines are unused keep pins open.
USB	VUSB_IN		V _{IN} min = 4.0V V _{IN} max = 5.25V	If lines are unused keep pins open.
	USB_DN	I/O	Differential Output Crossover voltage	
	USB_DP	I/O	Range	
			V_{CRS} min = 1.5V, V_{CRS} max = 2.0V	
			Driver Output Resistance Z _{DRv} typ = 32Ohm	
General	GPIO1	I/O	V _{OL} max = 0.2V at I = 2mA	If unused keep pins with a pull
Purpose	GPIO2	I/O	V_{OH} min = 2.55V at I = -0.5mA	up or pull down resistor while
Input/Output	GPIO3	I/O	V _{OH} max = 3.05V	the GPIO is set to input.
	GPIO4	I/O	V _{II} max = 0.8V	
	GPIO5	I/O	$V_{\rm IH}$ min = 2.0V,	
	GPIO6	I/O	V _{IH} max = VEXTmin + 0.3V = 3.05V	
	GPIO7 (SEL)	I/O	1	
	GPIO8 (MISO)	1/O		
	GPIO9	I/O		
	GPIO10	1/0	1	
	01010	1/0		

Function	Signal name	ю	Signal form and level	Comment
Analog	ADC_IN1	Ι	Input voltage: V _I min = 0V, V _I max = 2.4V	Inputs used for measuring
Digital	ADC_IN2	Ι	Ri ≈ 450kOhm	external voltages.
Converter			f _c max < 3kHz	ADC_IN1 and ADC_IN2 are
			Sensitivity, accuracy: 12 Bit 1 Bit = 0.585mV	internally multiplexed through analog switch.
Digital	DAC_OUT	0	V _{oL} max = 0.2V at I = 2mA V _{oH} min = 2.55V at I = -0.5mA	PWM signal which can be smoothed by an external filter.
Analog Converter			V_{OH} max = 3.05V	Smoothed by an external litter.
Digital Audio	DAI0	0	V _{OL} max = 0.2V at I = 2mA	See Table 8 for details.
interface	DAI1	Ι	V _{OH} min = 2.55V at I = -0.5mA V _{OH} max = 3.05V	If unused keep pins open.
	DAI2	0	V0HINAX - 5.05V	
	DAI3	Ι	V _{IL} max = 0.8V	
	DAI4	Ι	V _{IH} min = 2.0V	
	DAI5	Ι	V_{IH} max = VEXTmin + 0.3V = 3.05V	
	DAI6	0		
Analog	VMIC	0	V_0 min = 2.4V	Microphone supply for
Audio interface			V_{O} typ = 2.5V	customer feeding circuits
Interface			V _o max = 2.6V	
			I _{max} = 2mA	
	EPP2	0	1.0954Vpp (differential) typical	The audio output can directly
	EPN2	0	3.4Vpp differential maximal	operate a 32-Ohm- loudspeaker.
			Audio mode TBD	If unused keep pins open.
			Measurement conditions TBD	
			Minimum differential resp. single ended load 27Ohms	
	EPP1	0	1.0954Vpp (differential) typical	The audio output can directly
	EPN1	0	6.0Vp-p differential maximal	operate an 8-Ohm- loudspeaker.
			Audio mode TBD	If unused keep pins open.
			Measurement conditions TBD	
			Minimum differential resp. single ended load 7.50hms	
	MICP1		Full Scale Input Voltage 1.578Vpp	Balanced or single ended
	MICN1	I	0dBm0 Input Voltage 1.0954Vpp	microphone or line inputs with external feeding circuit (using
	MICP2	Ι	At MICNx, apply external bias from 1.0V to	VMIC and AGND).
	MICN2	I	1.6V. Audio mode TBD	If unused keep pins open.
			Measurement conditions TBD	
	AGND		Analog Ground	GND level for external audio circuits

5.4 **Power Supply Ratings**

Table 16: Power supply ratings

Parameter	Description	Conditions		Min	Тур	Max	Unit
BATT+	Supply voltage	Directly measured at reference point TP BATT+ and TP GND, see Chapter 3.1.2 Voltage must stay within the min/max values, including voltage drop, ripple,		3.2	3.8	4.5	V
	Voltage drop during	spikes.	ower control level			400	mV
	transmit burst	Normal condition, power control level for P _{out max}				100	
	Voltage ripple	Normal condition, po for P _{out max} @ f<200kHz @ f>200kHz	ower control level			50 2	mV
I _{VDDLP}	OFF State	RTC Backup	@ BATT+ = 0V		25		μA
I _{BATT+}	supply current	POWER DOWN mode ¹⁾			50	100	μA
	Average standby	SLEEP mode	@ DRX = 9		TBD		mA
	supply current ²⁾	SLEEP mode	@ DRX = 5		TBD		mA
		SLEEP mode	@ DRX = 2		TBD		mA
		IDLE mode	@ DRX = 2		TBD		mA

¹⁾ Measured after module INIT (switch ON the module and following switch OFF); applied voltage on BATT+ (w/o INIT) show increased POWER DOWN supply current.

²⁾ Additional conditions:

SLEEP measurements started 3 minutes after switch ON the module Averaging times: SLEEP mode - 3 minutes; IDLE mode - 1.5 minutes Measurements with communication tester: empty BA table, no cell reselection USB interface disabled

Table 17: Current consumption during transmit burst

Mode	GSM call	GPRS Class 8	GPRS Class10		GPRS Class 12	
Timeslot configuration	1Tx / 1Rx 1Tx / 4Rx		2Tx / 3Rx		4Tx / 1Rx	
Frequency ^{*)}			850/9	00MHz		
Maximum possible power (RF power typical)	2W (33dBm)	2W (33dBm)	2W (33dBm)		2W (33dBm)	
Power reduced with AT^SCFG	No	No	No	Yes up to 30dBm	No	Yes up to 27dBm
Current characteristics						
Burst current @ 50Ω antenna (typ.)	2.0A	2.0A	2.0A	1.5A	2.0A	1.3A
Burst current @ total mismatch	3.2A	3.2A	3.2A	2.3A	3.2A	1.9A
Average current @ 50Ω antenna (typ.)	335mA	385mA	610mA	485mA	1060mA	710mA
Average current @ total mismatch	485mA	535mA	910mA	685mA	1660mA	1010mA

*) Currents in the frequency bands GSM 1800MHz and GSM 1900MHz are lower due to lower RF output levels.

5.5 Electrostatic Discharge

The GSM engine is not protected against Electrostatic Discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates a TC65 module.

Special ESD protection provided on TC65:

Antenna interface: one spark discharge line (spark gap)

SIM interface: clamp diodes for protection against overvoltage.

The remaining ports of TC65 are not accessible to the user of the final product (since they are installed within the device) and therefore, are only protected according to the "Human Body Model" requirements.

TC65 has been tested according to the EN 61000-4-2 standard. The measured values can be gathered from the following table.

Specification / Requirements	Contact discharge	Air discharge				
ETSI EN 301 489-7						
ESD at SIM port	±4kV	± 8kV				
ESD at antenna port	±4kV	± 8kV				
Human Body Model (Test condition	Human Body Model (Test conditions: 1.5k Ω , 100pF)					
ESD at USB interface	± 1kV	± 1kV				
ESD at all other interfaces	± 1kV	± 1kV				

Table 18: Measured electrostatic values

Note: Please note that the values may vary with the individual application design. For example, it matters whether or not the application platform is grounded over external devices like a computer or other equipment, such as the Siemens reference application described in Chapter 8.

5.6 Reliability Characteristics

The test conditions stated below are an extract of the complete test specifications.

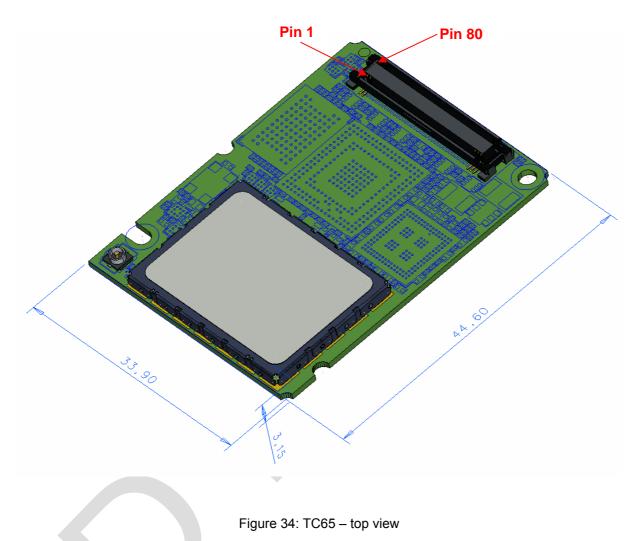
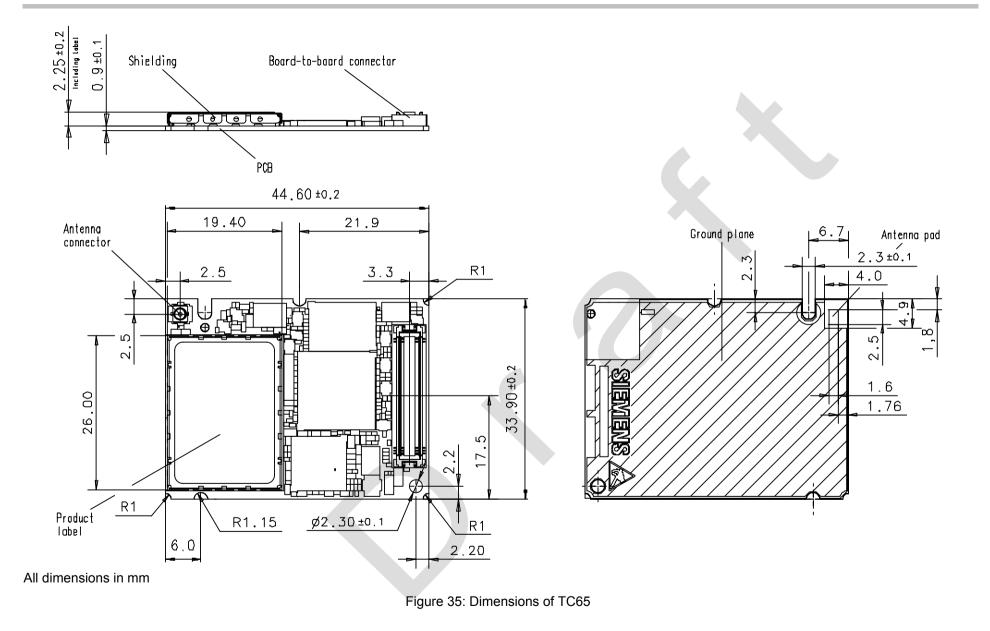

Type of test	Conditions	Standard
Vibration	Frequency range: 10-20Hz; acceleration: 3.1mm amplitude Frequency range: 20-500Hz; acceleration: 5g Duration: 2h per axis = 10 cycles; 3 axes	DIN IEC 68-2-6
Shock half-sinus	Acceleration: 500g Shock duration: 1msec 1 shock per axis 6 positions (± x, y and z)	DIN IEC 68-2-27
Dry heat	Temperature: +70 ±2°C Test duration: 16h Humidity in the test chamber: < 50%	EN 60068-2-2 Bb ETS 300019-2-7
Temperature change (shock)	Low temperature: -40°C ±2°C High temperature: +85°C ±2°C Changeover time: < 30s (dual chamber system) Test duration: 1h Number of repetitions: 100	DIN IEC 68-2-14 Na ETS 300019-2-7
Damp heat cyclic	High temperature: +55°C ±2°C Low temperature: +25°C ±2°C Humidity: 93% ±3% Number of repetitions: 6 Test duration: 12h + 12h	DIN IEC 68-2-30 Db ETS 300019-2-5
Cold (constant exposure)	Temperature: -40 ±2°C Test duration: 16h	DIN IEC 68-2-1

Table 19: Summary of reliability test conditions


6 Mechanics

6.1 Mechanical Dimensions of TC65

Figure 34 shows the top view of TC65 and provides an overview of the board's mechanical dimensions. For further details see Figure 35.

SIEMENS

6.2 Mounting TC65 to the Application Platform

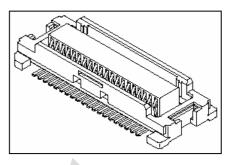
There are many ways to properly install TC65 in the host device. An efficient approach is to mount the TC65 PCB to a frame, plate, rack or chassis.

Fasteners can be M2 screws plus suitable washers, circuit board spacers, or customized screws, clamps, or brackets. In addition, the board-to-board connection can also be utilized to achieve better support. To help you find appropriate spacers a list of selected screws and distance sleeves for 3mm stacking height can be found in Section 9.2.

When using the two small holes take care that the screws are inserted with the screw head on the bottom of the TC65 PCB. Screws for the large holes can be inserted from top or bottom.

For proper grounding it is strongly recommended to use large ground plane on the bottom of board in addition to the five GND pins of the board-to-board connector. The ground plane may also be used to attach cooling elements, e.g. a heat sink or thermally conductive tape.

To prevent mechanical damage, be careful not to force, bend or twist the module. Be sure it is positioned flat against the host device.

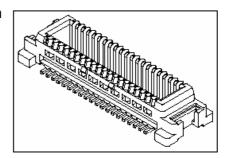

All the information you need to install an antenna is summarized in Chapter 4. Note that the antenna pad on the bottom of the TC65 PCB must not be influenced by any other PCBs, components or by the housing of the host device. It needs to be surrounded by a restricted space as described in Section 4.1.

6.3 Board-to-Board Application Connector

This section provides the specifications of the 80-pin board-to-board connector used to connect TC65 to the external application.

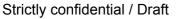
Connector mounted on the TC65 module:

Type: 52991-0808 SlimStack Receptacle 80 pins, 0.50mm pitch, for stacking heights from 3.0 to 4.0mm, see Figure 36 for details. Supplier: Molex www.molex.com



Parameter	Specification (80-pin B2B connector)
Electrical	
Number of Contacts	80
Contact spacing	0.5mm (.020")
Voltage	50V
Rated current	0.5A max per contact
Contact resistance	50mΩ max per contact
Insulation resistance	> 100MΩ
Dielectric Withstanding Voltage	500V AC (for 1 minute)
Physical	
Insulator material (housing)	White glass-filled LCP plastic, flammability UL 94V 0
Contact material	Plating: Gold over nickel
Insertion force 1 st	< 74.4N
Insertion force 30 th	< 65.6N
Withdrawal force 1 st	> 10.8N
Maximum connection cycles	30 (@ 70mΩ max per contact)

Table 20: Technical specifications of Molex board-to-board connector


Mating connector types for the customer's application offered by Molex:

- 53748-0808 SlimStack Plug, 3mm stacking height, see Figure 37 for details.
- 53916-0808 SlimStack Plug, 4mm stacking height

TC65 Hardware Interface Description

SIEMENS

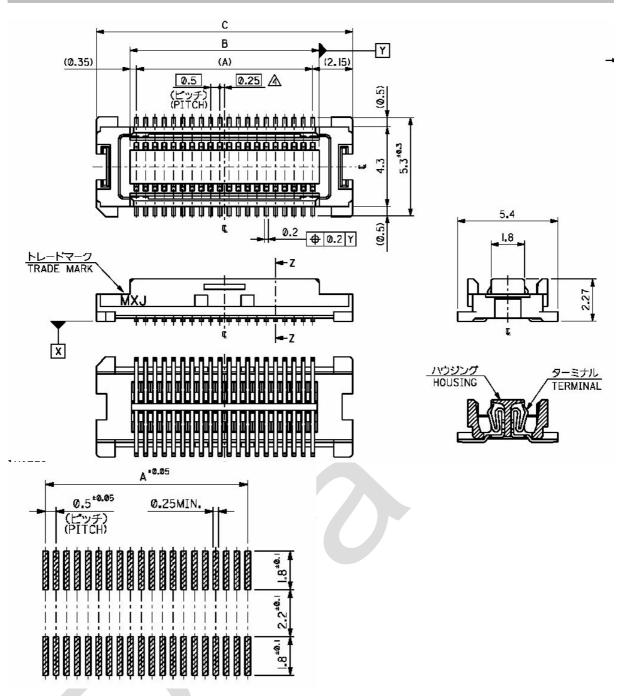


Figure 36: Molex board-to-board connector 52991-0808 on TC65

TC65 Hardware Interface Description

Strictly confidential / Draft

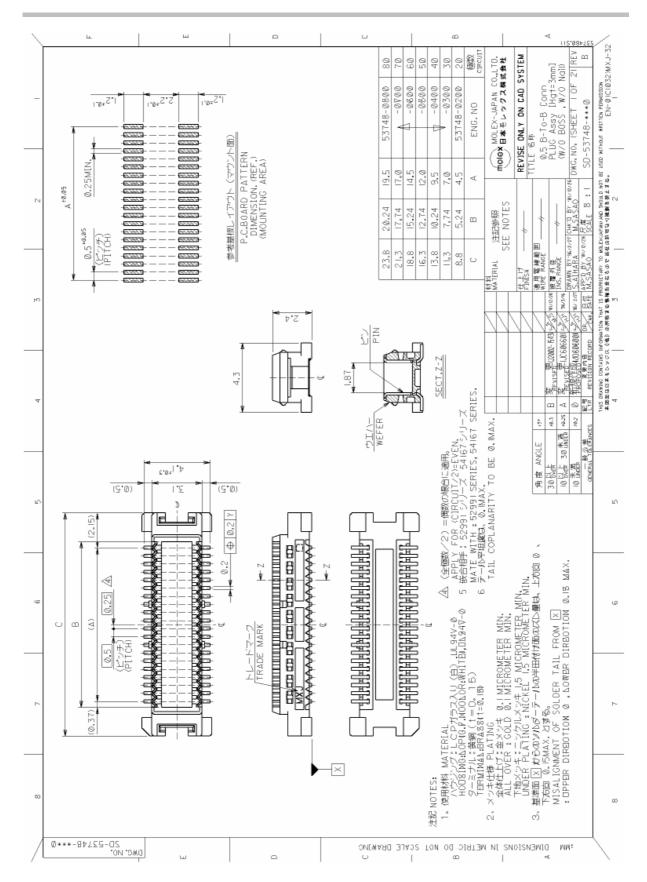


Figure 37: Mating board-to-board connector 53748-0808 on application

SIEMENS

7 Sample Application

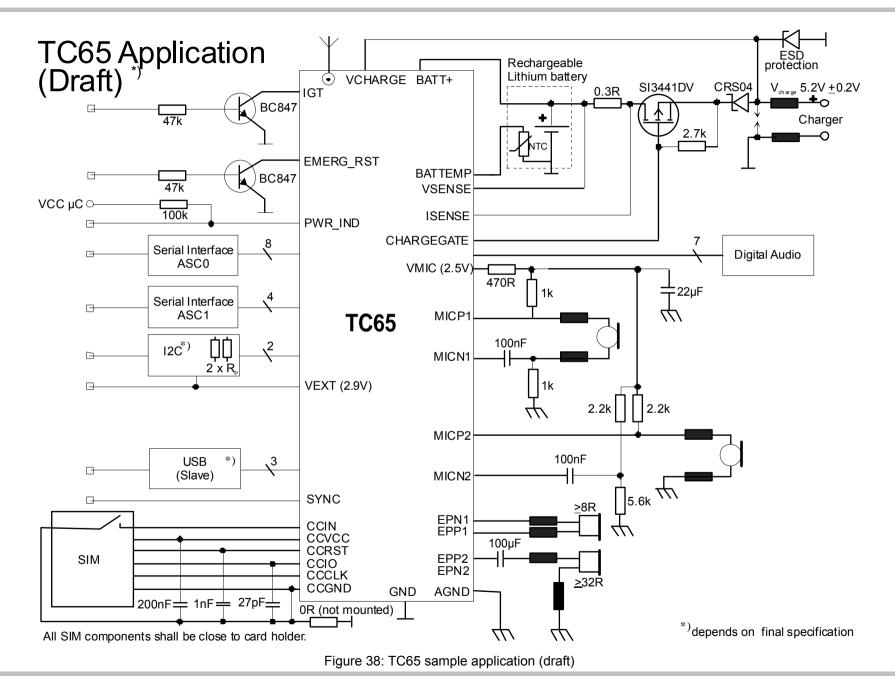
Figure 38 shows a typical example of how to integrate a TC65 module into the GSM part of a mobile application. Usage of the various host interfaces depends on the desired features of the application.

Audio interface 1 demonstrates the balanced connection of microphone and earpiece. This solution is particularly well suited for internal transducers. Audio interface 2 uses an unbalanced microphone and earpiece connection typically found in headset applications.

The charging circuit is optimized for the charging stages (trickle charging and software controlled charging) as well as the battery and charger specifications described in Section 3.4.

The PWR_IND line is an open collector that needs an external pull-up resistor which connects to the voltage supply of the microcontroller VCC μ C. Low state of the open collector pulls the PWR_IND signal low and indicates that the TC65 module is active, high level notifies the Power-down mode.

If the module is in Power-down mode avoid current flowing from any other source into the module circuit, for example reverse current from high state external control lines. Therefore, the controlling application must be designed to prevent reverse or return flow. This is not necessary for the USB interface.

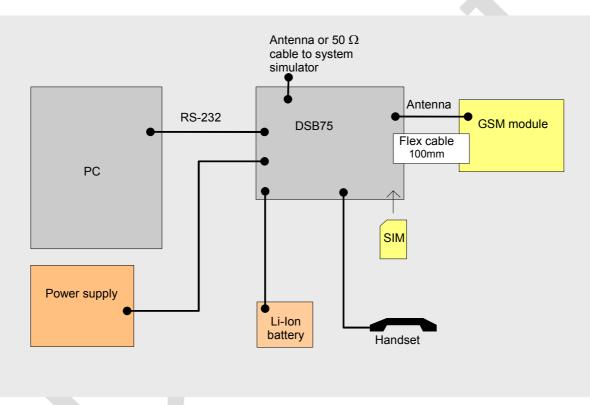

The I2C interface can be powered from an external supply or via the VEXT line of TC65. The advantage of this solution is that when the module enters the Power-down mode, the I2C interface is shut down as well. If you prefer to connect an I2C interface to an external power supply, take care that the interface is shut down when the PWR_IND signal goes high in Power-down mode.

The EMC measures are best practice recommendations. In fact, an adequate EMC strategy for an individual application is very much determined by the overall layout and, especially, the position of components. For example, mounting the internal acoustic transducers directly on the PCB eliminates the need to use the ferrite beads shown in the sample schematic. However, when connecting cables to the module's interfaces it is strongly recommended to add appropriate ferrite beads for reducing RF radiation.

Disclaimer

No warranty, either stated or implied, is provided on the sample schematic diagram shown in Figure 38 and the information detailed in this section. As functionality and compliance with national regulations depend to a great amount on the used electronic components and the individual application layout manufacturers are required to ensure adequate design and operating safeguards for their products using TC65 modules.

SIEMENS



8 Reference Approval

8.1 Reference Equipment for Type Approval

The Siemens reference setup submitted to type approve TC65 consists of the following components:

- Siemens TC65 cellular engine
- Development Support Box DSB75
- SIM card reader integrated on DSB75
- U.FL-R-SMT antenna connector and U.FL-LP antenna cable
- Handset type Votronic HH-SI-30.3/V1.1/0
- Li-lon battery
- PC as MMI

Figure 39: Reference equipment for Type Approval

8.2 Compliance with FCC Rules and Regulations

The FCC Equipment Authorization Certification for the TC65 reference application described in Section 8.1 is listed under the

FCC identifier QIPTC65 IC: 267W-TC65 granted to Siemens AG.

The TC65 reference application registered under the above identifier is certified to be in accordance with the following Rules and Regulations of the Federal Communications Commission (FCC).

Power listed is ERP for Part 22 and EIRP for Part 24

"This device contains GSM and GPRS Class12 functions in the 900 and 1800MHz Band which are not operational in U.S. Territories.

This device is to be used only for mobile and fixed applications. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. Users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance. Antennas used for this OEM module must not exceed 8.4dBi gain (GSM 1900) and 2.9dBi (GSM 850) for mobile and fixed operating configurations. This device is approved as a module to be installed in other devices."

The FCC label of the module must be visible from the outside. If not, the host device is required to bear a second label stating, "Contains FCC ID QIPTC65".

IMPORTANT: Manufacturers of mobile or fixed devices incorporating TC65 modules are advised to

- clarify any regulatory questions,
- have their completed product tested,
- have product approved for FCC compliance, and
- include instructions according to above mentioned RF exposure statements in end product user manual.

Please note that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

9 Appendix

9.1 List of Parts and Accessories

Description	Supplier	Ordering information
TC65	Siemens	Siemens ordering number: L36880-N8355-A100
Siemens Car Kit Portable	Siemens	Siemens ordering number: L36880-N3015-A117
DSB75 Support Box	Siemens	Siemens ordering number: L36880-N8811-A100
Votronic Handset	VOTRONIC	Votronic HH-SI-30.3/V1.1/0 VOTRONIC Entwicklungs- und Produktionsgesellschaft für elektronische Geräte mbH Saarbrücker Str. 8 66386 St. Ingbert Germany Phone: +49-(0)6 89 4 / 92 55-0 Fax: +49-(0)6 89 4 / 92 55-88 e-mail: <u>contact@votronic.com</u>
SIM card holder incl. push button ejector and slide-in tray	Molex	Ordering numbers: 91228 91236 Sales contacts are listed in Table 22.
Board-to-board connector	Molex	Sales contacts are listed in Table 22.
U.FL-R-SMT antenna connector	Hirose	See Section 4.3 for details on U.FL-R-SMT connector, mating plugs and cables.
		Sales contacts are listed in Table 23.

Table 21: List of parts and accessories

Molex For further information please click: http://www.molex.com/	Molex Deutschland GmbH Felix-Wankel-Str. 11 4078 Heilbronn-Biberach Germany Phone: +49-7066-9555 0 Fax: +49-7066-9555 29 Email: <u>mxgermany@molex.com</u>	American Headquarters Lisle, Illinois 60532 U.S.A. Phone: +1-800-78MOLEX Fax: +1-630-969-1352
Molex China Distributors Beijing, Room 1319, Tower B, COFCO Plaza No. 8, Jian Guo Men Nei Street, 100005 Beijing P.R. China Phone: +86-10-6526-9628 Phone: +86-10-6526-9728 Phone: +86-10-6526-9731 Fax: +86-10-6526-9730	Molex Singapore Pte. Ltd. Jurong, Singapore Phone: +65-268-6868 Fax: +65-265-6044	Molex Japan Co. Ltd. Yamato, Kanagawa, Japan Phone: +81-462-65-2324 Fax: +81-462-65-2366

Table 22: Molex sales contacts (subject to change)	
--	--

 Table 23: Hirose sales contacts (subject to change)

		·
Hirose Ltd. For further information please click: http://www.hirose.com	Hirose Electric (U.S.A.) Inc 2688 Westhills Court Simi Valley, CA 93065 U.S.A. Phone: +1-805-522-7958 Fax: +1-805-522-3217	Hirose Electric GmbH Zeppelinstrasse 42 73760 Ostfildern Kemnat 4 Germany Phone: +49-711-4560-021 Fax +49-711-4560-729 E-mail info@hirose.de
Hirose Electric UK, Ltd Crownhill Business Centre 22 Vincent Avenue, Crownhill Milton Keynes, MK8 OAB Great Britain Phone:+44-1908-305400 Fax: +44-1908-305401	Hirose Electric Co., Ltd. 5-23, Osaki 5 Chome, Shinagawa-Ku Tokyo 141 Japan Phone: +81-03-3491-9741 Fax: +81-03-3493-2933	Hirose Electric Co., Ltd. European Branche First class Building 4F Beechavenue 46 1119PV Schiphol-Rijk Netherlands Phone: +31-20-6557-460 Fax: +31-20-6557-469

9.2 Fasteners and Fixings for Electronic Equipment

This section provides a list of suppliers and manufacturers offering fasteners and fixings for electronic equipment and PCB mounting. The content of this section is designed to offer basic guidance to various mounting solutions with no warranty on the accuracy and sufficiency of the information supplied. Please note that the list remains preliminary although it is going to be updated in later versions of this document.

9.2.1 Fasteners from German Supplier ETTINGER GmbH

Sales contact:	ETTINGER GmbH
	http://www.cttipgor

http://www.ettinger.de/main.cfm Phone: +4981 04 66 23 - 0 Fax: +4981 04 66 23 - 0

The following tables contain only article numbers and basic parameters of the listed components. For further detail and ordering information please contact Ettinger GmbH.

Please note that some of the listed screws, spacers and nuts are delivered with the DSB75 Support Board. See comments below.

Article number: 05.71.038	Spacer - Aluminum / Wall thickness = 0.8mm
Length	3.0mm
Material	AlMgSi-0,5
For internal diameter	M2=2.0-2.3
Internal diameter	d = 2.4mm
External diameter	4.0mm
Vogt AG No.	x40030080.10
0	

SIEM	ENS
------	-----

Article number: 07.51.403	Insulating Spacer for M2 Self-gripping ^{*)}
Length	3.0mm
Material	Polyamide 6.6
Surface	Black
Internal diameter	2.2mm
External diameter	4.0mm
Flammability rating	UL94-HB
	$\begin{array}{c} D \\ \hline \\ \\ \\ \\ \hline \\$

 $^{\star)}\,$ 2 spacers are delivered with DSB75 Support Board

Article number: 05.11.209	Threaded Stud M2.5 - M2 Type E / External thread at both ends
Length	3.0mm
Material	Stainless steel X12CrMoS17
Thread 1 / Length	M2.5 / 6.0mm
Thread 2 / Length	M2 / 8.0mm
Width across flats	5
Recess	yes
Туре	External / External

Article number: 01.14.131	Screw M2 ^{*)} DIN 84 - ISO 1207
Length	8.0mm
Material	Steel 4.8
Surface	Zinced A2K
Thread	M2
Head diameter	D = 3.8mm
Head height	1.30mm
Туре	Slotted cheese head screw

$^{\star)}$ 2 screws are delivered with DSB75 Support Board

Article number: 01.14.141	Screw M2 DIN 84 - ISO 1207
Length	10.0mm
Material	Steel 4.8
Surface	Zinced A2K
Thread	M2
Head diameter	D = 3.8mm
Head height	1.30mm
Туре	Slotted cheese head screw

Article number: 02.10.011	Hexagon Nut ^{*)} DIN 934 - ISO 4032
Material	Steel 4.8
Surface	Zinced A2K
Thread	M2
Wrench size / Ø	4
Thickness / L	1.6mm
Туре	Nut DIN/UNC, DIN934

*) 2 nuts are delivered with DSB75 Support Board

9.3 Data Sheets of Recommended Batteries

The following two data sheets have been provided by VARTA Microbattery GmbH.

Click here for sales contacts and further information: <u>http://www.varta-microbattery.com</u>

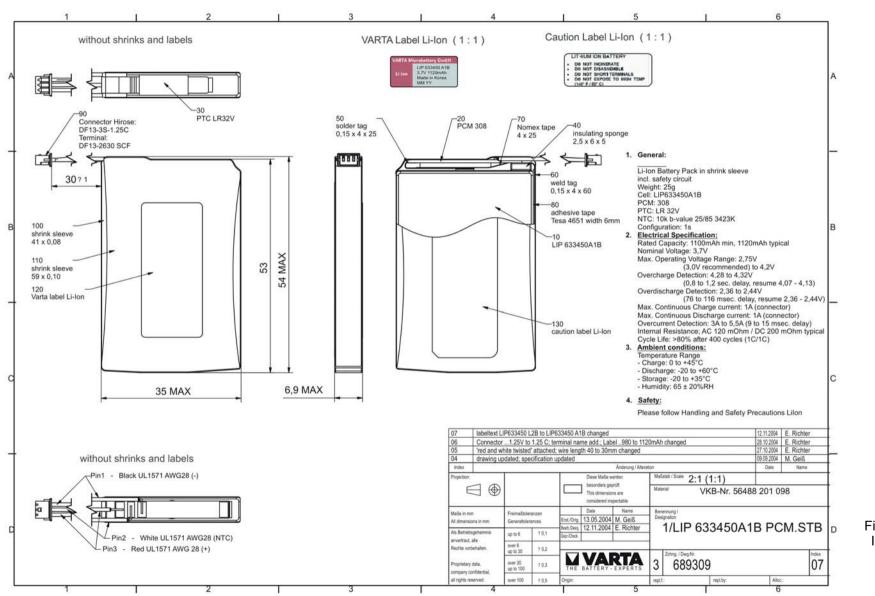
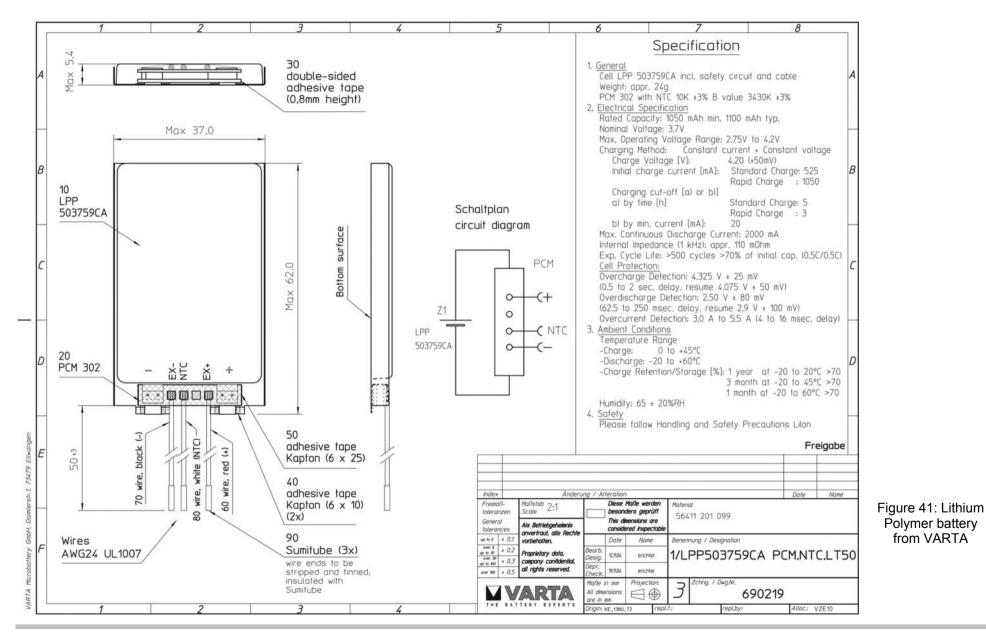



Figure 40: Lithium Ion battery from VARTA

TC65_HD_V00.302